The Visual Computer manuscript No.
(will be inserted by the editor)

StefanieWuhrer - Alan Brunton

Segmenting Animated ObjectsInto Near-Rigid Components

Abstract We present a novel approach to solve the problem
of segmenting a sequence of animated objects into near-rigid
components based dngiven poses of the same non-rigid
object. We model the segmentation problem as a cluster-
ing problem in dual space and find near-rigid segments with
the property that segment boundaries are located at regions
of large deformation. The presented approach is asymptoti-
cally faster than previous approaches that achieve the same
property and does not require any user-specified parameters.
However, if desired, the user may interactively change the
number of segments. We demonstrate the practical value of
our approach using experiments.

1 Introduction

Mesh segmentation is an important tool in computer graph-
ics. Different applications require mesh segmentations such
as morphing, texture mapping, mesh simplification, and skgig-1 TWo segmented poses of a horse model.
ton extraction. The type of mesh segmentation that is re-

uired depends strongly on the application. In the follow- . . .
iqng, we aspsume that a?wyanimated ggject is given as trian pd Twigg [7] consider the rotational sequences between

lar mesh and we focus on near-rigid mesh segmentatio g(responding triangles in different poses. Each rotational

For a recent survey on mesh segmentations in general, réfeuence IS m_apped to a pointin a hlgh-dlm_ensmnal space
to Shamir [17]. and the near-rigid components are found using mean-shift

. . e clustering in this space. This clustering is used for skeleton
Segmenting a mesh into near-rigid components basede %‘raction and animation. Although James and Twigg find

a given set of deforming input meshes has various app"CnZégr-rigid components, they do not find a segmentation of

tions in geometry processing and .computergraphics Sucr{he mesh because some triangles in deforming regions do
skell\jlztor: extraction [7]tr?ng morphmgt [71, [13]’ [Zl]t' i not belong to any cluster. Sattler et al. [16] pursue a similar
ost prévious methods segment one given static meg proach. However, unlike James and Twigg, they do not an-

[9], [14], [15], [21]. Recently, several methods were progy e the motion of each triangle of the mesh, but the motion

po;se(f:i Jh?t cqn5|der iegme_mlnkg a mesh ::)?sed 'otn a 9¥FBach vertex of the mesh. Vertices with similar motions are
€ Od © orrglng7mei°,6eslv;| K TOW? plo'g —to-po:cn Cotrr:et‘lustered to obtain a segmentation. However, the experimen-
spondence [8], [7], [16], [12]. Katz et al. [8] transform Ral results show that a near-rigid segmentation is not always

given poses into a multi-dimensional space with the P'O8htained. Lee et al. [12] propose an algorithm to find a near-

erty that all of the poses are similar in this space. ‘]amr(?&id segmentation. The algorithm initially finds feature tri-

angles on the mesh and uses those to grow clusters. The clus-
ters are grown according to a distance metric between trian-
National Research Council of Canada, Ottawa, Canada gles based on a combination of geodesic distances and de-
E-mail: {stefanie.wuhrer, alan.bruntp@nrc-cnre.gc.ca formation distances. Although visually pleasing results are

Research supported in part by HPCVL.

2 Stefanie Wuhrer, Alan Brunton

obtained, the algorithm is too slow for practical purposes Next, we find a clustering in dual space. The goal is to
since all pairwise distances between triangles are computid a segmentation with the property that segment bound-
Furthermore, the algorithm requires user-specified paranagies are located at regions of the largest deformation. Note
ters. that regions of largest deformationir correspond to edges

We propose a novel method to segment a mesh into neaith large weights inD(M). Hence, we can find the sought
rigid components. Giveh poses of the same non-rigid ob-segmentation by finding a partition @f(A/) consisting of
jectas triangular mesheés? . .., S(*=1) with known point- d clusters that has the property that the smallest distance be-
to-point correspondences, we aim to partition the mesh iritgeen any pair of clusters is largest among all partitions of
near-rigid segments with the property that segment bound¢ /) that consist ofi clusters. We call a partition with this
aries are located at regions of large deformation. Let theoperty afarthestd-partition of D(M).

meshess(®), ..., S*~1 containn vertices each. Our ap- More formally, a farthesti-partition is defined as fol-
proach works for 2-manifold meshes of arbitrary topologyjows. Lets, , denote the weight of the edge connectirand
We achieve this goal by modeling the segmentation prop-a partition? of a setd into d disjoint clusters’s, . . ., Cj,

lem as a clustering problem in dual space. Our algorithi@called ad-partition of M. A d-partition? is characterized
runs inO(k?n + nlogn) time, which is a significant im- by theinter-cluster distance

provement over the algorithm by Lee et al. that takés?)
time. Furthermore, our algorithm does not require any user-
specified parameters. However, if desired, the user may in-

teractively change the number of segments. Dint(P) = " e

= mi i Op.q-
C;#C;eP peCi,qeCy

2 Segmentation Using Minimum Spanning Treein Dual A farthestd-partition is ad-partition with largest inter-cluster
Space distance.

If the numberd of clusters is known, then a farthest
This section shows how a near-rigid segmentation is copartition of D(1/) can be found as follows. First, a minimum
puted using a clustering approach in dual space. The sgganning tred (M) of D(M) is computed. Second, thie-
mentation has the property that segment boundaries arell@dges ofl’'(M) that have the largest weights are deleted

cated at regions of the largest deformation. from T'(M). This partitionsI'(M) into d clusters. Kleinberg
We start withk posesS(®), ..., S(*~1) of the same non- and Tardos [10, p. 160] prove that this algorithm computes a

rigid object given as triangular meshes. We assume that faethestd-partition of D(M).

meshesS(® ..., -1 share the same underlying mesh Ag the numbetl of clusters is unknown in our case, we

structureM. Hence, we know the m%sh structure W'tg‘ modify the second step of the algorithm by Kleinberg and

k sets of ordered vertex coordinate$”, ..., V™ in R®. Tardos to delete all the edges Bt 1) that have weights

Let M containn triangles. larger than a threshold . This results in a farthest partition

To find a near-rigid segmentation 6f, we make use of of D (1r). It remains to compute the threshaid
the dual graphD(M) of M. The dual graphD(M) has a

node for each triangle af/. We denote the dual node cor- To computet, in a fully automatic manner, we analyzed

. the distribution of the edge weights for a given set of input
responding to face¢ of M by D(f). Two nodes ofD(M) A, ;
are joined by an arc if the two corresponding triangles/in meshes. We found that the distribution of the edge weights

share an edge. We denote the dual arc corresponding t rea%embles an exponential distribution. The distribution for
edgee of M byb(e). Note that the dual graph is merely a hie’Alien example discussed in Section 5 is shown in Fig-
abstract graph that captures the connectivity information € 2 We use the known edge weights to learn the under-
M. The dual vertice®(f) of D(M) are not embedded. Iylng.exponenUaI distribution via maximum likelihood es-

We assign a weight to each edgef D(M). The weight timation. We then set; to the third quartile of the learned
of e is equal to the maximum difference in dihedral anglglsmbunon' This way we are expected to k& of the

; : dges irl’'(M).

of the supporting planes of the two triangles f corre-]) .
sponding to the two endpoints ef That is, we compute the _ This approach results in a farthest partition of)/).
dihedral angle between the two supporting planes of the tftce a partition ofD (1) is known, we can easily com-
triangles of M corresponding to the two endpointsofor Pute the corresponding segmentation fdar. Ea_ch cluster
all the posess®, ... S(:=1)_ The weight ofe is then set as of D(M) corresponds to a connected set of triangled/of
the maximum difference between any pair of dihedral afhhese sets of triangles are the computed near-rigid segments
gles. This weight corresponds to the change in dinedral &§-}- As the partition ofD()) is farthest, the near-rigid
gle during the deformation. The weight can therefore be se¥#gmentation af/ has the property that segment boundaries
as a measure of rigidity. The smaller the weight, the smalfe located at regions of the largest deformation.
the change in dihedral angle between the two triangles dur- As the algorithm only computes edge weights and a min-
ing the deformation, and the more rigidly the two triangleisnum spanning tre&' (1), the algorithm’s running time is
move with respect to each other. O(k*n + nlogn).

Segmenting Animated Objects Into Near-Rigid Components 3

Segment size parameter estimation Mirrored segment sizes

2500 2500

2000 4 2000 4
§ £
£ ram | £ 1500
1 s
3 1000 A 510004

500 4 50 4

0 Hﬂm = 0 += T T "_“H‘H‘ .H‘ﬂ'_‘ =
Q 22 b @ & .0 SN S K PO G N Q ot o 25 25 n 5 o A 9 W I
=
Size of segment Sizes

Fig. 3 Distribution of the segment sizes. The left side shows #igtalition. The right side shows the Gaussian obtained logonitig the values
alongzr = 1.

found, we merge the two segments joined by the edge and
repeat. The algorithm terminates once no segment is consid-
8000 ered to be small. This algorithm maintains the property that
7000 { — segment boundaries are located at regions of large deforma-
tion because we merge along the least deforming edges that
are available. More precisely, the resulting segmentation
has the property that has the segment boundaries along
edges of largest deformation among all segmentations with

Angular parameter estimation

5000

Humbrer of occuITences
X
=}
=}
=}

3000 minimum segment siz&.

e It remains to compute the threshalgl To computets

1 H H i 0 in a fully automatic way, we analyzed the distribution of the
B I segment sizes for a given set of input meshes. The distri-

BOS TTS 25 3 38 4 455 886 68 bution for the Cat example discussed in Section 5 is shown

in Figure 3. The left side shows the distribution of the seg-
ment sizes. Note that each segment contains at least one ele-
ment. The right side shows the distribution obtained by mir-
roring the values along = 1. We see that the resulting
distribution resembles a Gaussian distribution. Clearly, the
3 Merging Small Segments obtained distribution is not a true Gaussian distribution be-
cause each segment size is an integer value. Nonetheless, we
The segmentation corresponding to a farthest clusteringrofdel the mirrored segment sizes as a Gaussian distribution.
D(M) may contain a large number of small segments. We use the known segment sizes to learn the underlying nor-
many applications such as metamorphosis and skeleton mal distribution(, %) via maximum likelihood estimation.
traction, small segments are undesirable. This section théiée then set; to i + 30. This way,99.7% of the segments
fore shows how to merge small segments with neighboriage expected to be considered small.
segments in a fully automatic manner.

This section considers two subproblems: evaluating Whé‘m
segments are considered to be small, and merging small ST
ments with neighboring segments. Assume that we are given

a threshold, such that any segment with less thanel- Note that the approach taken in this paper first computes
ements is considered to be small and any segment withh@§ many segments and merges them subsequently. The rea-
leasti, elements is not considered to be small. We will disson for this is that the correct number of segments is initially
cuss later how to computg in a fully automatic way. unknown. It is therefore not straightforward to tell where the

To merge small segments with neighboring segments, weer segmentation of the model will occur before an initial
find the edge ir"(M) with minimum weight that connects clustering is computed. Our two-step approach overcomes
a small segment to a neighboring segment. Once the edgthis problem in an elegant way.

Angles {degre es)

Fig. 2 Distribution of the edge weights.

We can implement this algorithm using a priority queue.
ice we need to merge at most- 1 times, the running
e of the merge step i8(n logn).

4 Stefanie Wuhrer, Alan Brunton

4 Interactively Changing the Number of Segments 5 Experiments

This section presents experiments using the algorithm pre-

The previous sections outline how to segment a mesh ire"ted in this paper. The experiments were conducted using
near-rigid components using a fully automatic approach trf} implementation in C++ on an Intel (R) Pentium (R) D

does not require any user-specified parameters. HoweVgf 3-5 GB of RAM. OpenMP was used to improve the effi-
since different applications require different degrees of seg€ncy of the algorithms. To compute the minimum spanning
mentation, it may be desirable to the user to interactivelye€’ (1) and to find connected components of a graph, the
change the number of segments found by the algorithm. THROSt graph library [19] was used.

section presents two ways how the user can change the num-We first present the segmentation obtained using our al-

ber of segments in a time efficient way. In Section 5, rithm and subsequently compare our algorithm to previ-
demonstrate that for medium-size datasets (containing ufPl methods.
15000 triangles), the interaction is performed in real-time.

5.1 Results

The number of segments computed by our two-step algo-
rithm depends both on andt,. Denote the number of seg-The first experiment shows the computed near-rigid segments
ments obtained by cutting edges of the dual tree with weighta set of alien models. The alien model is chosen from the
abovet; by d;. Denote the number of segments obtainegrinceton Shape Benchmarkl8] and animated to obtain
after merging all of the segments with at mestiriangles muitiple postures with known correspondences using the au-
by d>. Clearly,d; < d,. We call the automatically computediomatic technique by Baran and Popoy2]. The models
segmentation containing segments thbase segmentation contain 13664 triangles. The given input poses to our algo-

rithm with the final near-rigid segmentation are shown in the

We allow the user to efficiently change the segmentatid@st four columns of Figure 4. The near-rigid segmentation
in two ways. First, the user can set the number of segmehgfore the merge step is shown in the first two columns of
to any number betweeni, andd,. We achieve this by stor- Figure 4. We can see that the merge step is necessary to pre-
ing the listL of edges that are added during the merge st¥gnt fragmented models. The final result captures the near-
in the order in which they are added during the merge stdjglid correspondences learned from the given input poses.
When the algorithm terminates; segments are present ifNote how the segmentation boundary along the waist sepa-
the base segmentation. If the user desiresgments, we re- rates distinct regions that deform non-rigidly. A similar seg-
move the lastl — d, edges inL from the dual graph. This mentation boundary occurs between the hands and the arms.
yieldsd segments with the property that each segment in th@te that since the alien does not bend its right knee in any
new segmentation is a subset of a segment in the base $éghe given poses, the upper and lower right leg belong to
mentation. That is, no new segments are formed that contdif same segment.
triangles from two or more segments of the base segmen- We demonstrate the accuracy of our approach by com-
tation. This is a desirable property as it allows the user B&ring our result to the ground truth for this experiment.
obtain a segmentation hierarchy. The disadvantage of thige ground truth is found by assigning each vertex to the
segmentation hierarchy is that small segments may occursegment (or bone) that obtains the largest weight during the
skinning phase by Baran and Pop@sialgorithm. The ground
Second, observe that by varying and by performing truth segmentatio”’ consists of 17 segments and is shown

’ on the left of Figure 5. The segmentatiércomputed by our

the merge step outlined in Section 3 with this updated pge . iihm assigns each triangle to a segment. We assign each
rameter, we can adjust the number of segments. By mcre\%%—

ing , above the size of the smallest existing segmeint tex of the mesh to the segment that contains most of its

the current segmentationjs merged with another Segmentnudent triangles. We evaluate the accuracy of our segmen-

and the number of seaments decreases. By decreasio ation using the dice measure. That is, for each ground truth
:) - by de egsing segment’ in C’, we find the percentage ofcovered by the
the size of the largest segménhat was merged in the pre-

. : corresponding segmentin C. The corresponding segment
vious step] is not merged to another segment and the NUMS. ~'6f a seament’ in " is found as the seqment 6f
ber of segments increases. Hence, we adjust the numbetrh 9 g
segments by varying the parametgand by performing the

merge step with this new parameter. In order to allow this up,,

date in an efficient way, we store the componerdbtained . . g
: ' segmentatiol® consists of eight segments. Hence, one seg-
after deleting edges from the dual tr8e)/) based o, as ment inC' may correspond to more than one segmert’in

outlined in Section 2. For each user interaction, we adjuﬁﬁe dice measure averaged over all segment iis $1%

the threshold; and perform the merge step starting fro . .
the components. Note that this adjustment does not yieldrq-ge?%eSt dice measure 180% and the worst dice measure

segmentation hierarchy. However, no small fragments occu
since the size of the smallest segment is bounded. 1 http://shape.cs.princeton.edu/benchmark/

3t maximizes the number of overlapping vertices.
We show two ground truth tests. First, we compare the
gmentatior shown in Figure 4 to the ground truth. The

Segmenting Animated Objects Into Near-Rigid Components 5

Fig. 4 Alien model. First two columns show the segmentation béf@energe step. Remaining columns show the final segmenktstszed on
four input poses.

ments using the first approach presented in Section 4. The
result for the horse model is shown in Figure 8. The base
segmentation shown on the left contains 15 segments. The
figure shows segmentations containing 1193 and 3880 seg-
ments. Note that these segmentations are instances of a seg-
mentation hierarchy and contain many small segments.
Second, we interactively updatgto increase the num-
ber of segments for the horse model using the second ap-
Fig. 5 Ground truth experiment. Left shows the ground truth. Rigaroach presented in Section 4. The result is shown in Fig-
shows result after interactively choosing 17 segments. ure 9. The base segmentation shown on the left contains 15
segments. The figure shows segmentations containing 22,
))) 23, and 33 segments. Note that all of the segmentations show
_ Second, we interactively increase the number of segmejig metrically meaningful near-rigid components. For instance
in our segmentation to 17 using the first type of interactiqhnhen increasing the number of segments from 22 to 23, a
outlined in Section 4. We then perform the same experimegégment corresponding to a bone of the horse’s left back leg
as before. The segments are shown on the right of Figuresgcurs. Furthermore, note that no small segments occur.

The dice measure averaged over all segmentg'is 81%. The running time of the algorithm is summarized in Ta-
The best dice measureli80% and the worst dice measure i$le 1.

38%. This shows that a good segmentation is learned based
on only four input poses.
The second experiment shows the computed near-rigid
segments of a set of armadillo models. The models are cle2 Comparison
sen from the AIM@SHAPE repositoy The models con-
tain 331904 triangles. The segmented input poses to our alVe compare the quality of the segmentation found by our al-
gorithm are shown in Figure 6. Note how the upper arrgorithm to the quality of the segmentation found by previous
lower arm, hands, and on the armadillo’s left, the fingerglgorithms. We use the horse model for this comparison.
form near-rigid components. The methods by Katz et al. [8] and Katz and Tal [9] con-
Furthermore, we conducted experiments on a numbersider shape properties such as concavities instead of con-
datasets created and used by Sumner et al. [20]. The datasiggring non-rigid deformation. These approaches therefore
are obtained using deformation transfer. The results are shdavnot segment the tail of the horse. Therefore, these ap-
in Figure 7. The horse model contains 16843 triangles, thegaches are not suitable to decompose a shape into non-
elephant model contains 84638 triangles, the cat model ceigid components.
tains 14410 triangles, and the flamingo model contains 52895Figure 10 shows a comparison between our result and
triangles. We can see that the segmentation captures the stkedesegmentation result by Lee et al. [11]. Four similar poses
tal structure of the animals well in all of the examples. Not&re used in both experiments to find the segmentation. The
that parts of the mesh which deform smoothly such as the fadises are shown in the top row of Figure 10. The bottom
or the spine of the cat are correctly recognized as one sefiFigure 10 shows the results. The left side of Figure 10
ment. Although these parts of the mesh are partitioned irgbows the result by Lee et al., the middle of Figure 10 shows
many small segments during the clustering step discussedim result using the automatically computed parameters
Section 2, they are correctly merged during the merge st@pdit,, and the right side of Figure 10 shows our result after
discussed in Section 3. interactively increasing the number of segments using the
Finally, we show some results of interactively changingecond approach discussed in Section 4. Unlike the approach
the number of segments using both approaches presenteayihee et al., our approach does not place the head and the
Section 4. First, we interactively change the number of segedy of the horse in different segments. This is even true
as the number of segments is increased interactively. As the
2 http://shapes.aimatshape.net/releases.php segmentation is based on four input poses where the body

Stefanie Wuhrer, Alan Brunton

Fig. 6 Armadillo model.

Number of triangles| Number of input poses Time without merge| Total time | Interaction 1] Interaction 2

Armadillo 331904 5 31ls 349's 13s 320s
Elephant 84638 10 17s 46's 3s 30s
Flamingo 52895 7 5s 16s 1s 11s
Horse 16843 10 3s 4s 2ms 1s
Cat 14410 10 3s 4s <1ms < 1lms
Alien 13664 4 739 ms 2s <Ims <1ms

Table 1 Running time of the algorithm

merge step.

and the head move almost rigidly with respect to each othe .
it makes sense to treat the body and the head as one segm ~ * =

Figure 11 shows a comparison between our result al
the segmentation result by James and Twigg [7]. The sar
poses are used in both experiments to find the segmenta 4
tion. The top row shows some of the used poses. Note thai' =2 \

in the result obtained by James and Twigg, segments can b
disconnected. Furthermore, the triangles shown in black do

not belong to any segment. Therefore, the partition is not
suitable for many applications such as motion transfer. Ofig. 10 Top: Poses used to find the segmentation. Bottom: Comparison

result yields a segmentation that partitions the model i

connected segments where each triangle belongs to exa? I{/ll] (left).
one segment. We can see that, unlike the result obtained by
James and Twigg, our result does not suffer from over seg)\ﬁ ‘
menting the model. \

Figure 12 shows a comparison between our result and th ﬁ{v

segmentation result by Lee et al. [12]. The same poses al -

used in both experiments to find the segmentation. The top
row of Figure 11 shows some of the used poses. Note that
although the segmentation results are different, both results
capture the overall skeletal structure of the horse well. Our
algorithm results in fewer segments than the algorithm by
Lee et al. Namely, the body and the head are in the same #

&
L

segment. The reason is that in the given sequence, the body _ _ _ _
and the head move mainly rigidly with respect to each oth&fg. 11 Comparison between our algorithm (right) and the algorithm

by James and Twigg [7] (left).

The main advantage of our algorithm compared to Leé
et al.'s work is its computational efficiency. To compute the

segmentation of the horse based on 48 key frames, our-al

. Interaction 1 adjusts the banmof segments by cutting edges. Interaction 2 adjtssénd repeats the

rigtween our algorithm (middle and right) and the algorithynLize et

ik aa

gorithm takes63 seconds. Hence, our algorithm is abouf Conclusion
15 times faster than the algorithm by Lee et al. [12] for

this example. Furthermore, we demonstrate the practicabife presented an approach to efficiently solve the problem
ity of our algorithm by segmenting the large-scale armadillaf segmenting a deforming triangular mesh into near-rigid
model. Lee et al. only present experiments for models witomponents based dngiven poses of the same non-rigid

up to20000 triangles. object. The efficiency of the approach was demonstrated in

Segmenting Animated Objects Into Near-Rigid Components 7

W ,

Fig. 7 Segmentations of the elephant model, the horse model, tieockel, and the flamingo model.

We assume that the point-to-point correspondences of
the input meshes are known. An interesting direction for fu-
ture work is to automatically compute the point-to-point cor-
respondences prior to segmenting the meshes. This is a chal-
lenging task that can be approached by either using statisti-
cal shape models [4], by repeatedly computing the point-to-
point correspondences for pairs of shapes [3], [5], [6], [22],

Fig. 12 Comparison between our algorithm (right) and the algorithnpr by registering one template mesh to all poses [1].
by Lee et al. [12] (left).

experimental results. The approach does not require any user-
specified parameters.

Stefanie Wuhrer, Alan Brunton

Fig. 8 Interactively updating the number of segments of the horsgein

5

Fig. 9 Interactively updating- to increase the number of segments of the horse model.

Acknowledgments

13.

We thank Doug James and Dong-Yee Lee for their kind peyy
mission to use their images. This work was partially sup-
ported by OGS.

15.

References

1.

10.
11.

12.

. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kiel.

16.

Dragomic Anguelov, Daphne Koller, Hoi-Cheung Pang, Peav
Srinivasan and Sebastian Thrun. Recovering Articulateg@b
Models from 3D Range Data. ldncertainty in Artificial Intelli-
gence Conferenc2004.

17.

. llya Baran and Jovan Popévi Automatic rigging and animation 18.

of 3d characters.ACM Transactions on Graphic26(3), 2007.
Proceedings of SIGGRAPH. 19
Calculus of non-rigid surfaces for geometry and textureipaa-

tion. IEEE Transactions of Visualization and Computer Graphics
13(5):902-913, 2007.

. Rhodri H. Davies, Carole J. Twining, Tim F. Cootes, Johi\a-

terton, and Chris J. Taylor. 3d statistical shape modetsdirect
optimization of description lengthLecture Notes in Computer 21.
Science2352:3-20, 2002.

. Qixing Huang, Bart Adams, Martin Wicke, and Leonidas J.

Guibas. Non-rigid registration under isometric deformasi.
Computer Graphics Forum (Special Issue of Symposium on Gi2.
ometry Processing 200827(5), 2008.

. Varun Jain, Hao Zhang, and Oliver van Kaick. Non-rigidcspe

tral correspondence of triangle meshé#ternational Journal on
Shape ModelingSpecial Issue of SMI 2006, to appear.

. Doug L. James and Christopher D. Twigg. Skinning mesh ani-

mations. ACM Transactions on Graphic24(3):399-407, 2005.
Proceedings of SIGGRAPH.

. Sagi Katz, George Leifman, and Ayellet Tal. Mesh segni@mta

using feature point and core extractiomhe Visual Computer
21(8-10):865-875, 2005.

. Sagi Katz and Ayellet Tal. Hierarchical mesh decompaositis-

ing fuzzy clustering and cutsACM Transactions on Graphics
22(3):954-96, 2003.

Jon Kleinberg and Eva TardosAlgorithm Design Addison-
Wesley, 2005.

Tong-Yee Lee, Ping-Hsien Lin, Shaur-Uei Yan, and Chao-H
Lin. Mesh decomposition using motion information from aaim
tion sequences: Animating geometrical modeomputer Ani-
mation and Virtual Worlds16(3-4):519-529, 2005.

Tong-Yee Lee, Yu-Shuen Wang, and Tai-Guang Chen. Sdgmen
ing a deforming mesh into near-rigid componentghe Visual
Computer 22(9):729-739, 2006.

John Lewis, Matt Cordner, and Nickson Fong. Pose spdoe-de
mation: A unified approach to shape interpolation and s&alet
driven deformation. 2000.

Jyh-Ming Lien and Nancy M. Amato. Approximate convex de-
composition of polygonsComputational Geometry: Theory and
Applications 35(1):100-123, 2006.

Rong Liu and Hao Zhang. Mesh segmentation via spectral em
bedding and contour analysiSomputer Graphics Forum (Special
Issue of Eurographics 200,726:385-394, 2007.

Mirko Sattler, Ralf Sarlette, and Reinhard Klein. Siemahd effi-
cient compression of animation sequencesSGA '05: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animationpages 209-217, 2005.

Ariel Shamir. A survey on mesh segmentation technig@esn-
puter graphics forumto appear.

Philip Shilane, Patrick Min, Michael Kazhdan, and Thema
Funkhouser. The princeton shape benchmarkPrbteedings of
Shape Modeling Internationa2004.

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsddihe.boost
graph library: user guide and reference manualddison-Wesley
Longman Publishing Co., Inc., 2002.

20. Robert W. Sumner and Jovan PojovDeformation transfer for

triangle meshesACM Transactions on Graphic23(3):399-405,
2004. Proceedings of SIGGRAPH.

Julien Tierny, Jean-Philippe Vandeborre, and Mohamaouii.
Invariant high level reeb graphs of 3D polygonal meshes3rth
IEEE International Symposium on 3D Data Processing Vigaali
tion Transmission2006.

Hao Zhang, Alla Sheffer, Daniel Cohen-Or, Qingnan Zl@liver
van Kaick, and Andrea Tagliasacchi. Deformation-driveaph
correspondence.Computer Graphics Forum (Special Issue of
Symposium on Geometry Processing 2028]5), 2008.

