
The Visual Computer manuscript No.
(will be inserted by the editor)

Stefanie Wuhrer · Alan Brunton

Segmenting Animated Objects Into Near-Rigid Components

Abstract We present a novel approach to solve the problem
of segmenting a sequence of animated objects into near-rigid
components based onk given poses of the same non-rigid
object. We model the segmentation problem as a cluster-
ing problem in dual space and find near-rigid segments with
the property that segment boundaries are located at regions
of large deformation. The presented approach is asymptoti-
cally faster than previous approaches that achieve the same
property and does not require any user-specified parameters.
However, if desired, the user may interactively change the
number of segments. We demonstrate the practical value of
our approach using experiments.

1 Introduction

Mesh segmentation is an important tool in computer graph-
ics. Different applications require mesh segmentations such
as morphing, texture mapping, mesh simplification, and skele-
ton extraction. The type of mesh segmentation that is re-
quired depends strongly on the application. In the follow-
ing, we assume that an animated object is given as triangu-
lar mesh and we focus on near-rigid mesh segmentations.
For a recent survey on mesh segmentations in general, refer
to Shamir [17].

Segmenting a mesh into near-rigid components based on
a given set of deforming input meshes has various applica-
tions in geometry processing and computer graphics such as
skeleton extraction [7] and morphing [7], [13], [21].

Most previous methods segment one given static mesh
[9], [14], [15], [21]. Recently, several methods were pro-
posed that consider segmenting a mesh based on a given
set of deforming meshes with known point-to-point corre-
spondence [8], [7], [16], [12]. Katz et al. [8] transform the
given poses into a multi-dimensional space with the prop-
erty that all of the poses are similar in this space. James

Research supported in part by HPCVL.

National Research Council of Canada, Ottawa, Canada
E-mail:{stefanie.wuhrer, alan.brunton}@nrc-cnrc.gc.ca

Fig. 1 Two segmented poses of a horse model.

and Twigg [7] consider the rotational sequences between
corresponding triangles in different poses. Each rotational
sequence is mapped to a point in a high-dimensional space
and the near-rigid components are found using mean-shift
clustering in this space. This clustering is used for skeleton
extraction and animation. Although James and Twigg find
near-rigid components, they do not find a segmentation of
the mesh because some triangles in deforming regions do
not belong to any cluster. Sattler et al. [16] pursue a similar
approach. However, unlike James and Twigg, they do not an-
alyze the motion of each triangle of the mesh, but the motion
of each vertex of the mesh. Vertices with similar motions are
clustered to obtain a segmentation. However, the experimen-
tal results show that a near-rigid segmentation is not always
obtained. Lee et al. [12] propose an algorithm to find a near-
rigid segmentation. The algorithm initially finds feature tri-
angles on the mesh and uses those to grow clusters. The clus-
ters are grown according to a distance metric between trian-
gles based on a combination of geodesic distances and de-
formation distances. Although visually pleasing results are



2 Stefanie Wuhrer, Alan Brunton

obtained, the algorithm is too slow for practical purposes
since all pairwise distances between triangles are computed.
Furthermore, the algorithm requires user-specified parame-
ters.

We propose a novel method to segment a mesh into near-
rigid components. Givenk poses of the same non-rigid ob-
ject as triangular meshesS(0), . . . , S(k−1) with known point-
to-point correspondences, we aim to partition the mesh into
near-rigid segments with the property that segment bound-
aries are located at regions of large deformation. Let the
meshesS(0), . . . , S(k−1) containn vertices each. Our ap-
proach works for 2-manifold meshes of arbitrary topology.

We achieve this goal by modeling the segmentation prob-
lem as a clustering problem in dual space. Our algorithm
runs in O(k2n + n log n) time, which is a significant im-
provement over the algorithm by Lee et al. that takesω(n2)
time. Furthermore, our algorithm does not require any user-
specified parameters. However, if desired, the user may in-
teractively change the number of segments.

2 Segmentation Using Minimum Spanning Tree in Dual
Space

This section shows how a near-rigid segmentation is com-
puted using a clustering approach in dual space. The seg-
mentation has the property that segment boundaries are lo-
cated at regions of the largest deformation.

We start withk posesS(0), . . . , S(k−1) of the same non-
rigid object given as triangular meshes. We assume that the
meshesS(0), . . . , S(k−1) share the same underlying mesh
structureM . Hence, we know the mesh structureM with
k sets of ordered vertex coordinatesV (0), . . . , V (k) in R

3.
Let M containn triangles.

To find a near-rigid segmentation ofM , we make use of
the dual graphD(M) of M . The dual graphD(M) has a
node for each triangle ofM . We denote the dual node cor-
responding to facef of M by D(f). Two nodes ofD(M)
are joined by an arc if the two corresponding triangles inM
share an edge. We denote the dual arc corresponding to an
edgee of M by D(e). Note that the dual graph is merely an
abstract graph that captures the connectivity information of
M . The dual verticesD(f) of D(M) are not embedded.

We assign a weight to each edgee of D(M). The weight
of e is equal to the maximum difference in dihedral angle
of the supporting planes of the two triangles ofM corre-
sponding to the two endpoints ofe. That is, we compute the
dihedral angle between the two supporting planes of the two
triangles ofM corresponding to the two endpoints ofe for
all the posesS(0), . . . S(k−1). The weight ofe is then set as
the maximum difference between any pair of dihedral an-
gles. This weight corresponds to the change in dihedral an-
gle during the deformation. The weight can therefore be seen
as a measure of rigidity. The smaller the weight, the smaller
the change in dihedral angle between the two triangles dur-
ing the deformation, and the more rigidly the two triangles
move with respect to each other.

Next, we find a clustering in dual space. The goal is to
find a segmentation with the property that segment bound-
aries are located at regions of the largest deformation. Note
that regions of largest deformation inM correspond to edges
with large weights inD(M). Hence, we can find the sought
segmentation by finding a partition ofD(M) consisting of
d clusters that has the property that the smallest distance be-
tween any pair of clusters is largest among all partitions of
D(M) that consist ofd clusters. We call a partition with this
property afarthestd-partition ofD(M).

More formally, a farthestd-partition is defined as fol-
lows. Letδp,q denote the weight of the edge connectingp and
q. A partitionP of a setM intod disjoint clustersC1, . . . , Ck

is called ad-partition ofM . A d-partitionP is characterized
by theinter-cluster distance

Dint(P) = min
Ci 6=Cj∈P

min
p∈Ci,q∈Cj

δp,q.

A farthestd-partition is ad-partition with largest inter-cluster
distance.

If the numberd of clusters is known, then a farthestd-
partition ofD(M) can be found as follows. First, a minimum
spanning treeT (M) of D(M) is computed. Second, thed−
1 edges ofT (M) that have the largest weights are deleted
from T (M). This partitionsT (M) into d clusters. Kleinberg
and Tardos [10, p. 160] prove that this algorithm computes a
farthestd-partition ofD(M).

As the numberd of clusters is unknown in our case, we
modify the second step of the algorithm by Kleinberg and
Tardos to delete all the edges ofT (M) that have weights
larger than a thresholdt1. This results in a farthest partition
of D(M). It remains to compute the thresholdt1.

To computet1 in a fully automatic manner, we analyzed
the distribution of the edge weights for a given set of input
meshes. We found that the distribution of the edge weights
resembles an exponential distribution. The distribution for
the Alien example discussed in Section 5 is shown in Fig-
ure 2. We use the known edge weights to learn the under-
lying exponential distribution via maximum likelihood es-
timation. We then sett1 to the third quartile of the learned
distribution. This way we are expected to keep75% of the
edges inT (M).

This approach results in a farthest partition ofD(M).
Once a partition ofD(M) is known, we can easily com-
pute the corresponding segmentation forM . Each cluster
of D(M) corresponds to a connected set of triangles ofM .
These sets of triangles are the computed near-rigid segments
of M . As the partition ofD(M) is farthest, the near-rigid
segmentation ofM has the property that segment boundaries
are located at regions of the largest deformation.

As the algorithm only computes edge weights and a min-
imum spanning treeT (M), the algorithm’s running time is
O(k2n + n log n).



Segmenting Animated Objects Into Near-Rigid Components 3

Fig. 3 Distribution of the segment sizes. The left side shows the distribution. The right side shows the Gaussian obtained by mirroring the values
alongx = 1.

Fig. 2 Distribution of the edge weights.

3 Merging Small Segments

The segmentation corresponding to a farthest clustering of
D(M) may contain a large number of small segments. In
many applications such as metamorphosis and skeleton ex-
traction, small segments are undesirable. This section there-
fore shows how to merge small segments with neighboring
segments in a fully automatic manner.

This section considers two subproblems: evaluating which
segments are considered to be small, and merging small seg-
ments with neighboring segments. Assume that we are given
a thresholdt2 such that any segment with less thant2 el-
ements is considered to be small and any segment with at
leastt2 elements is not considered to be small. We will dis-
cuss later how to computet2 in a fully automatic way.

To merge small segments with neighboring segments, we
find the edge inT (M) with minimum weight that connects
a small segment to a neighboring segment. Once the edge is

found, we merge the two segments joined by the edge and
repeat. The algorithm terminates once no segment is consid-
ered to be small. This algorithm maintains the property that
segment boundaries are located at regions of large deforma-
tion because we merge along the least deforming edges that
are available. More precisely, the resulting segmentationS
has the property thatS has the segment boundaries along
edges of largest deformation among all segmentations with
minimum segment sizet2.

It remains to compute the thresholdt2. To computet2
in a fully automatic way, we analyzed the distribution of the
segment sizes for a given set of input meshes. The distri-
bution for the Cat example discussed in Section 5 is shown
in Figure 3. The left side shows the distribution of the seg-
ment sizes. Note that each segment contains at least one ele-
ment. The right side shows the distribution obtained by mir-
roring the values alongx = 1. We see that the resulting
distribution resembles a Gaussian distribution. Clearly, the
obtained distribution is not a true Gaussian distribution be-
cause each segment size is an integer value. Nonetheless, we
model the mirrored segment sizes as a Gaussian distribution.
We use the known segment sizes to learn the underlying nor-
mal distribution(µ, σ2) via maximum likelihood estimation.
We then sett2 to µ + 3σ. This way,99.7% of the segments
are expected to be considered small.

We can implement this algorithm using a priority queue.
Since we need to merge at mostn − 1 times, the running
time of the merge step isO(n log n).

Note that the approach taken in this paper first computes
too many segments and merges them subsequently. The rea-
son for this is that the correct number of segments is initially
unknown. It is therefore not straightforward to tell where the
over segmentation of the model will occur before an initial
clustering is computed. Our two-step approach overcomes
this problem in an elegant way.



4 Stefanie Wuhrer, Alan Brunton

4 Interactively Changing the Number of Segments

The previous sections outline how to segment a mesh into
near-rigid components using a fully automatic approach that
does not require any user-specified parameters. However,
since different applications require different degrees of seg-
mentation, it may be desirable to the user to interactively
change the number of segments found by the algorithm. This
section presents two ways how the user can change the num-
ber of segments in a time efficient way. In Section 5, we
demonstrate that for medium-size datasets (containing up to
15000 triangles), the interaction is performed in real-time.

The number of segments computed by our two-step algo-
rithm depends both ont1 andt2. Denote the number of seg-
ments obtained by cutting edges of the dual tree with weight
abovet1 by d1. Denote the number of segments obtained
after merging all of the segments with at mostt2 triangles
by d2. Clearly,d2 ≤ d1. We call the automatically computed
segmentation containingd2 segments thebase segmentation.

We allow the user to efficiently change the segmentation
in two ways. First, the user can set the number of segments
to any numberd betweend2 andd1. We achieve this by stor-
ing the listL of edges that are added during the merge step
in the order in which they are added during the merge step.
When the algorithm terminates,d2 segments are present in
the base segmentation. If the user desiresd segments, we re-
move the lastd − d2 edges inL from the dual graph. This
yieldsd segments with the property that each segment in the
new segmentation is a subset of a segment in the base seg-
mentation. That is, no new segments are formed that contain
triangles from two or more segments of the base segmen-
tation. This is a desirable property as it allows the user to
obtain a segmentation hierarchy. The disadvantage of this
segmentation hierarchy is that small segments may occur.

Second, observe that by varyingt2 and by performing
the merge step outlined in Section 3 with this updated pa-
rameter, we can adjust the number of segments. By increas-
ing t2 above the size of the smallest existing segments in
the current segmentation,s is merged with another segment
and the number of segments decreases. By decreasingt2 to
the size of the largest segmentl that was merged in the pre-
vious step,l is not merged to another segment and the num-
ber of segments increases. Hence, we adjust the number of
segments by varying the parametert2 and by performing the
merge step with this new parameter. In order to allow this up-
date in an efficient way, we store the componentsc obtained
after deleting edges from the dual treeT (M) based ont1 as
outlined in Section 2. For each user interaction, we adjust
the thresholdt2 and perform the merge step starting from
the componentsc. Note that this adjustment does not yield a
segmentation hierarchy. However, no small fragments occur
since the size of the smallest segment is bounded.

5 Experiments

This section presents experiments using the algorithm pre-
sented in this paper. The experiments were conducted using
an implementation in C++ on an Intel (R) Pentium (R) D
with 3.5 GB of RAM. OpenMP was used to improve the effi-
ciency of the algorithms. To compute the minimum spanning
treeT (M) and to find connected components of a graph, the
boost graph library [19] was used.

We first present the segmentation obtained using our al-
gorithm and subsequently compare our algorithm to previ-
ous methods.

5.1 Results

The first experiment shows the computed near-rigid segments
of a set of alien models. The alien model is chosen from the
Princeton Shape Benchmark1 [18] and animated to obtain
multiple postures with known correspondences using the au-
tomatic technique by Baran and Popović [2]. The models
contain 13664 triangles. The given input poses to our algo-
rithm with the final near-rigid segmentation are shown in the
last four columns of Figure 4. The near-rigid segmentation
before the merge step is shown in the first two columns of
Figure 4. We can see that the merge step is necessary to pre-
vent fragmented models. The final result captures the near-
rigid correspondences learned from the given input poses.
Note how the segmentation boundary along the waist sepa-
rates distinct regions that deform non-rigidly. A similar seg-
mentation boundary occurs between the hands and the arms.
Note that since the alien does not bend its right knee in any
of the given poses, the upper and lower right leg belong to
the same segment.

We demonstrate the accuracy of our approach by com-
paring our result to the ground truth for this experiment.
The ground truth is found by assigning each vertex to the
segment (or bone) that obtains the largest weight during the
skinning phase by Baran and Popović’s algorithm. The ground
truth segmentationC ′ consists of 17 segments and is shown
on the left of Figure 5. The segmentationC computed by our
algorithm assigns each triangle to a segment. We assign each
vertex of the mesh to the segment that contains most of its
incident triangles. We evaluate the accuracy of our segmen-
tation using the dice measure. That is, for each ground truth
segmentc′ in C ′, we find the percentage ofc′ covered by the
corresponding segmentc in C. The corresponding segment
c in C of a segmentc′ in C ′ is found as the segment ofC
that maximizes the number of overlapping vertices.

We show two ground truth tests. First, we compare the
segmentationC shown in Figure 4 to the ground truth. The
segmentationC consists of eight segments. Hence, one seg-
ment inC may correspond to more than one segment inC ′.
The dice measure averaged over all segments inC ′ is 81%.
The best dice measure is100% and the worst dice measure
is 37%.

1 http://shape.cs.princeton.edu/benchmark/



Segmenting Animated Objects Into Near-Rigid Components 5

Fig. 4 Alien model. First two columns show the segmentation beforethe merge step. Remaining columns show the final segmentation based on
four input poses.

Fig. 5 Ground truth experiment. Left shows the ground truth. Right
shows result after interactively choosing 17 segments.

Second, we interactively increase the number of segments
in our segmentation to 17 using the first type of interaction
outlined in Section 4. We then perform the same experiment
as before. The segments are shown on the right of Figure 5.
The dice measure averaged over all segments inC ′ is 81%.
The best dice measure is100% and the worst dice measure is
38%. This shows that a good segmentation is learned based
on only four input poses.

The second experiment shows the computed near-rigid
segments of a set of armadillo models. The models are cho-
sen from the AIM@SHAPE repository2. The models con-
tain 331904 triangles. The segmented input poses to our al-
gorithm are shown in Figure 6. Note how the upper arm,
lower arm, hands, and on the armadillo’s left, the fingers,
form near-rigid components.

Furthermore, we conducted experiments on a number of
datasets created and used by Sumner et al. [20]. The datasets
are obtained using deformation transfer. The results are shown
in Figure 7. The horse model contains 16843 triangles, the
elephant model contains 84638 triangles, the cat model con-
tains 14410 triangles, and the flamingo model contains 52895
triangles. We can see that the segmentation captures the skele-
tal structure of the animals well in all of the examples. Note
that parts of the mesh which deform smoothly such as the tail
or the spine of the cat are correctly recognized as one seg-
ment. Although these parts of the mesh are partitioned into
many small segments during the clustering step discussed in
Section 2, they are correctly merged during the merge step
discussed in Section 3.

Finally, we show some results of interactively changing
the number of segments using both approaches presented in
Section 4. First, we interactively change the number of seg-

2 http://shapes.aimatshape.net/releases.php

ments using the first approach presented in Section 4. The
result for the horse model is shown in Figure 8. The base
segmentation shown on the left contains 15 segments. The
figure shows segmentations containing 1193 and 3880 seg-
ments. Note that these segmentations are instances of a seg-
mentation hierarchy and contain many small segments.

Second, we interactively updatet2 to increase the num-
ber of segments for the horse model using the second ap-
proach presented in Section 4. The result is shown in Fig-
ure 9. The base segmentation shown on the left contains 15
segments. The figure shows segmentations containing 22,
23, and 33 segments. Note that all of the segmentations show
geometrically meaningful near-rigid components. For instance,
when increasing the number of segments from 22 to 23, a
segment corresponding to a bone of the horse’s left back leg
occurs. Furthermore, note that no small segments occur.

The running time of the algorithm is summarized in Ta-
ble 1.

5.2 Comparison

We compare the quality of the segmentation found by our al-
gorithm to the quality of the segmentation found by previous
algorithms. We use the horse model for this comparison.

The methods by Katz et al. [8] and Katz and Tal [9] con-
sider shape properties such as concavities instead of con-
sidering non-rigid deformation. These approaches therefore
do not segment the tail of the horse. Therefore, these ap-
proaches are not suitable to decompose a shape into non-
rigid components.

Figure 10 shows a comparison between our result and
the segmentation result by Lee et al. [11]. Four similar poses
are used in both experiments to find the segmentation. The
poses are shown in the top row of Figure 10. The bottom
of Figure 10 shows the results. The left side of Figure 10
shows the result by Lee et al., the middle of Figure 10 shows
our result using the automatically computed parameterst1
andt2, and the right side of Figure 10 shows our result after
interactively increasing the number of segments using the
second approach discussed in Section 4. Unlike the approach
by Lee et al., our approach does not place the head and the
body of the horse in different segments. This is even true
as the number of segments is increased interactively. As the
segmentation is based on four input poses where the body



6 Stefanie Wuhrer, Alan Brunton

Fig. 6 Armadillo model.

Number of triangles Number of input poses Time without merge Total time Interaction 1 Interaction 2
Armadillo 331904 5 31 s 349 s 13 s 320 s
Elephant 84638 10 17 s 46 s 3 s 30 s
Flamingo 52895 7 5 s 16 s 1 s 11 s

Horse 16843 10 3 s 4 s 2 ms 1 s
Cat 14410 10 3 s 4 s < 1 ms < 1 ms

Alien 13664 4 739 ms 2 s < 1 ms < 1 ms

Table 1 Running time of the algorithm. Interaction 1 adjusts the number of segments by cutting edges. Interaction 2 adjustst2 and repeats the
merge step.

and the head move almost rigidly with respect to each other,
it makes sense to treat the body and the head as one segment.

Figure 11 shows a comparison between our result and
the segmentation result by James and Twigg [7]. The same
poses are used in both experiments to find the segmenta-
tion. The top row shows some of the used poses. Note that
in the result obtained by James and Twigg, segments can be
disconnected. Furthermore, the triangles shown in black do
not belong to any segment. Therefore, the partition is not
suitable for many applications such as motion transfer. Our
result yields a segmentation that partitions the model into
connected segments where each triangle belongs to exactly
one segment. We can see that, unlike the result obtained by
James and Twigg, our result does not suffer from over seg-
menting the model.

Figure 12 shows a comparison between our result and the
segmentation result by Lee et al. [12]. The same poses are
used in both experiments to find the segmentation. The top
row of Figure 11 shows some of the used poses. Note that
although the segmentation results are different, both results
capture the overall skeletal structure of the horse well. Our
algorithm results in fewer segments than the algorithm by
Lee et al. Namely, the body and the head are in the same
segment. The reason is that in the given sequence, the body
and the head move mainly rigidly with respect to each other.

The main advantage of our algorithm compared to Lee
et al.’s work is its computational efficiency. To compute the
segmentation of the horse based on 48 key frames, our al-
gorithm takes63 seconds. Hence, our algorithm is about
15 times faster than the algorithm by Lee et al. [12] for
this example. Furthermore, we demonstrate the practicabil-
ity of our algorithm by segmenting the large-scale armadillo
model. Lee et al. only present experiments for models with
up to20000 triangles.

Fig. 10 Top: Poses used to find the segmentation. Bottom: Comparison
between our algorithm (middle and right) and the algorithm by Lee et
al. [11] (left).

Fig. 11 Comparison between our algorithm (right) and the algorithm
by James and Twigg [7] (left).

6 Conclusion

We presented an approach to efficiently solve the problem
of segmenting a deforming triangular mesh into near-rigid
components based onk given poses of the same non-rigid
object. The efficiency of the approach was demonstrated in



Segmenting Animated Objects Into Near-Rigid Components 7

Fig. 7 Segmentations of the elephant model, the horse model, the cat model, and the flamingo model.

Fig. 12 Comparison between our algorithm (right) and the algorithm
by Lee et al. [12] (left).

experimental results. The approach does not require any user-
specified parameters.

We assume that the point-to-point correspondences of
the input meshes are known. An interesting direction for fu-
ture work is to automatically compute the point-to-point cor-
respondences prior to segmenting the meshes. This is a chal-
lenging task that can be approached by either using statisti-
cal shape models [4], by repeatedly computing the point-to-
point correspondences for pairs of shapes [3], [5], [6], [22],
or by registering one template mesh to all poses [1].



8 Stefanie Wuhrer, Alan Brunton

Fig. 8 Interactively updating the number of segments of the horse model.

Fig. 9 Interactively updatingt2 to increase the number of segments of the horse model.

Acknowledgments

We thank Doug James and Dong-Yee Lee for their kind per-
mission to use their images. This work was partially sup-
ported by OGS.

References

1. Dragomic Anguelov, Daphne Koller, Hoi-Cheung Pang, Praveen
Srinivasan and Sebastian Thrun. Recovering Articulated Object
Models from 3D Range Data. InUncertainty in Artificial Intelli-
gence Conference, 2004.

2. Ilya Baran and Jovan Popović. Automatic rigging and animation
of 3d characters.ACM Transactions on Graphics, 26(3), 2007.
Proceedings of SIGGRAPH.

3. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel.
Calculus of non-rigid surfaces for geometry and texture manipula-
tion. IEEE Transactions of Visualization and Computer Graphics,
13(5):902–913, 2007.

4. Rhodri H. Davies, Carole J. Twining, Tim F. Cootes, John C.Wa-
terton, and Chris J. Taylor. 3d statistical shape models using direct
optimization of description length.Lecture Notes in Computer
Science, 2352:3–20, 2002.

5. Qixing Huang, Bart Adams, Martin Wicke, and Leonidas J.
Guibas. Non-rigid registration under isometric deformations.
Computer Graphics Forum (Special Issue of Symposium on Ge-
ometry Processing 2008), 27(5), 2008.

6. Varun Jain, Hao Zhang, and Oliver van Kaick. Non-rigid spec-
tral correspondence of triangle meshes.International Journal on
Shape Modeling, Special Issue of SMI 2006, to appear.

7. Doug L. James and Christopher D. Twigg. Skinning mesh ani-
mations. ACM Transactions on Graphics, 24(3):399–407, 2005.
Proceedings of SIGGRAPH.

8. Sagi Katz, George Leifman, and Ayellet Tal. Mesh segmentation
using feature point and core extraction.The Visual Computer,
21(8–10):865–875, 2005.

9. Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition us-
ing fuzzy clustering and cuts.ACM Transactions on Graphics,
22(3):954–96, 2003.

10. Jon Kleinberg and Eva Tardos.Algorithm Design. Addison-
Wesley, 2005.

11. Tong-Yee Lee, Ping-Hsien Lin, Shaur-Uei Yan, and Chun-Hao
Lin. Mesh decomposition using motion information from anima-
tion sequences: Animating geometrical models.Computer Ani-
mation and Virtual Worlds, 16(3-4):519–529, 2005.

12. Tong-Yee Lee, Yu-Shuen Wang, and Tai-Guang Chen. Segment-
ing a deforming mesh into near-rigid components.The Visual
Computer, 22(9):729–739, 2006.

13. John Lewis, Matt Cordner, and Nickson Fong. Pose space defor-
mation: A unified approach to shape interpolation and skeleton-
driven deformation. 2000.

14. Jyh-Ming Lien and Nancy M. Amato. Approximate convex de-
composition of polygons.Computational Geometry: Theory and
Applications, 35(1):100–123, 2006.

15. Rong Liu and Hao Zhang. Mesh segmentation via spectral em-
bedding and contour analysis.Computer Graphics Forum (Special
Issue of Eurographics 2007), 26:385–394, 2007.

16. Mirko Sattler, Ralf Sarlette, and Reinhard Klein. Simple and effi-
cient compression of animation sequences. InSCA ’05: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 209–217, 2005.

17. Ariel Shamir. A survey on mesh segmentation techniques.Com-
puter graphics forum, to appear.

18. Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas
Funkhouser. The princeton shape benchmark. InProceedings of
Shape Modeling International, 2004.

19. Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine.The boost
graph library: user guide and reference manual. Addison-Wesley
Longman Publishing Co., Inc., 2002.

20. Robert W. Sumner and Jovan Popović. Deformation transfer for
triangle meshes.ACM Transactions on Graphics, 23(3):399–405,
2004. Proceedings of SIGGRAPH.

21. Julien Tierny, Jean-Philippe Vandeborre, and Mohamed Daoudi.
Invariant high level reeb graphs of 3D polygonal meshes. In3rd
IEEE International Symposium on 3D Data Processing Visualiza-
tion Transmission, 2006.

22. Hao Zhang, Alla Sheffer, Daniel Cohen-Or, Qingnan Zhou,Oliver
van Kaick, and Andrea Tagliasacchi. Deformation-driven shape
correspondence.Computer Graphics Forum (Special Issue of
Symposium on Geometry Processing 2008), 27(5), 2008.


