
Reconfiguration of Cube-Style Modular Robots
Using O(log n) Parallel Moves

Greg Aloupis1, Sébastien Collette1?, Erik D. Demaine2??, Stefan
Langerman1? ? ?, Vera Sacristán3†, and Stefanie Wuhrer4

1 Université Libre de Bruxelles, {greg.aloupis,secollet,slanger}@ulb.ac.be
2 Massachusetts Institute of Technology, edemaine@mit.edu

3 Universitat Politècnica de Catalunya, vera.sacristan@upc.edu
4 Carleton University, stefanie.wuhrer@gmail.com

Abstract. We consider a model of reconfigurable robot, introduced and
prototyped by the robotics community. The robot consists of indepen-
dently manipulable unit-square atoms that can extend/contract arms
on each side and attach/detach from neighbors. The optimal worst-case
number of sequential moves required to transform one connected con-
figuration to another was shown to be Θ(n) at ISAAC 2007. However,
in principle, atoms can all move simultaneously. We develop a parallel
algorithm for reconfiguration that runs in only O(logn) parallel steps,
although the total number of operations increases slightly to Θ(n logn).
The result is the first (theoretically) almost-instantaneous universally
reconfigurable robot built from simple units.

1 Introduction

In this paper, we consider homogeneous self-reconfiguring modular robots com-
posed of unit-cube atoms arranged in a grid configuration. Each atom is equipped
with mechanisms allowing it to extend each face out one unit and later retract it
back. Furthermore, the faces can attach/detach to faces of adjacent atoms; at all
times, the atoms should form a connected mass. When groups of atoms perform
the four basic atom operations (expand, contract, attach, detach) in a coordi-
nated way, the atoms move relative to one another, resulting in a reconfiguration
of the robot. Figure 1 shows an example of such a reconfiguration.

The robotics community has implemented this model in two prototype sys-
tems: crystalline atoms [3] and telecube atoms [6, 7]. In the crystalline model,
the default state for atoms is expanded, while in the telecube model, the default
state is contracted. Thus Figure 1 reconfigures a crystalline robot, or an ex-
panded telecube robot. The crystalline robots work in a single plane, forbidding

? Chargé de Recherches du FRS-FNRS.
?? Partially supported by NSF CAREER award CCF-0347776, DOE grant DE-FG02-

04ER25647, and AFOSR grant FA9550-07-1-0538.
? ? ? Chercheur Qualifié du FRS-FNRS.

† Partially supported by projects MEC MTM2006-01267 and DURSI 2005SGR00692.



2

Fig. 1. Example of reconfiguring crystalline atoms.

expand/contract/attach/detach operations parallel to the z axis, which is the
case we consider in this paper.

To ensure connectedness of the configuration space, the atoms must be ar-
ranged in meta-modules (or simply modules), which are groups of k × k atoms.
Any value k ≥ 2 suffices for universal reconfigurability [3]. Here the collection of
atoms composing a robot must remain connected in the sense that its module
graph (where vertices correspond to atoms and edges correspond to attached
atoms) is connected.

The complexity of a reconfiguration algorithm can be measured by the num-
ber of parallel steps performed (“makespan”), as well as the total number of
atom operations (“work”). In a parallel step, many atoms may perform moves
simultaneously. The number of parallel steps is typically the most significant fac-
tor in overall reconfiguration time, because the mechanical actions (expansion,
contraction, attachment, detachment) are the slowest part of the system.

Our main contribution in this paper is a reconfiguration algorithm that, given
a source robot S and a target robot T , each composed of n atoms arranged in
k × k modules for some constant k, reconfigures S into T in O(log n) parallel
steps and a total of O(n log n) atom operations. This result improves upon the
reconfiguration time of the algorithm presented at ISAAC 2007 [2], which takes
O(n) parallel steps (although only O(n) total operations, and also for three-
dimensional robots), as well as previous O(n2) algorithms [5, 7, 4].

A central assumption in our algorithm is that one atom, by contracting or
expanding, can pull or push all n atoms (linear strength). Thus our algorithm cer-
tainly tests the structural limits of a modular robot, but on the other hand this
assumption enables us to achieve reconfiguration times that are likely asymp-
totically optimal. The quadratic reconfiguration algorithms of [5, 7, 4] may be
given credit for being the least physically demanding on the structure of the
robot. Even the algorithm in [2] is less demanding than what we propose here,
because it does not produce arbitrarily high velocities (although it still uses lin-
ear strength). Another recent algorithm [1] considers the case where atoms have
only constant strength, and attains O(n) parallel steps and O(n2) total opera-
tions, which is optimal in this setting. Thus the improvement in reconfiguration
time obtained here requires a more relaxed physical model.

The main idea of our parallel algorithm is to recursively divide the plane
into a hierarchy of square cells and to employ a divide-and-conquer technique to
merge quadruples of cells. Each merge creates a cell containing a simple structure
using a constant number of moves. This structure, which fills the perimeter
of a cell as much as possible, can be decomposed into a constant number of
rectangular components. Because the steps to merge cells of the same level can
be executed in parallel, the total number of parallel steps used to reconfigure



3

any configuration to a simple structure is O(log n). The entire reconfiguration
takes place in the smallest 2c × 2c square containing the initial configuration,
where c is an integer.

We choose to describe our algorithm in terms of the naturally expanded mod-
ules of crystalline robots. Of course, this immediately implies reconfigurability
in the naturally contracted telecube model, by adding one step at the beginning
and end in which all atoms expand and contract in parallel. We also expect that
the individual constructions in our algorithm can be modified to directly work
in the (2D) telecube model as well.

Our algorithm effectively uses modules of size 4 × 4, but for clarity and
brevity assumes 32 × 32 blocks as the base case for cells. Reducing the module
size further leads to more complicated basic operations that we have designed
for use on large rectangular components. On the other hand, reducing the initial
block size leads to a larger number of possible shapes that we must consider
during the merge of cells. We have designed (though not rigorously analyzed) a
range of algorithms for 2× 2 modules with decreasing restrictions on block size.
This is discussed in Section 5. However, the bulk of this paper focuses on the
version that is easiest to describe.

2 Definitions

For the most part, we will deal with (meta-)modules, not atoms, which can be
viewed as lying on their own square lattice somewhat coarser than the atom
lattice. Refer to Figure 2 for examples of the following notions. A module is a
node if it has one neighbor (a leaf node), more than two neighbors (a branching
node), or exactly two neighbors not collinear with the node (a bending node). A
branch is a straight path of (non-node) modules between two nodes (including
the nodes themselves). A cell is a square of module positions (aligned with the
module lattice), some of which may be occupied by modules. The boundary of
a cell consists of all module positions touching the cell’s border. For cells of
sufficient size (≥ 4 modules per side), the near-boundary consists of all module
positions adjacent to the cell’s boundary. If a branch lies entirely in the boundary
of a cell, we call it a side-branch. The configuration within a cell is a ring if the
entire cell’s boundary is occupied by modules, and all remaining modules within
the cell are arranged at the bottom of the cell, filling row by row from left to
right. The configuration within a cell is sparse if it contains only side-branches.
A backbone is a set of branches forming a path that connects two opposite edges
of a cell.

3 Elementary Moves That Use O(1) Parallel Steps

Throughout this paper, whenever we describe a move, it is implied that we do
not disconnect the robot and that no collisions occur. We first describe three
basic module moves; see [2] for more details of how to implement these moves
in terms of individual atoms.



4

(a) (b) (c)

Fig. 2. (a) A ring. (b) A sparse cell with five side-branches and shaded near-boundary.
(c) A shaded backbone and eight nodes.

A slide moves a module one step in a compass direction dirSlide, using two
substrate modules. See Figure 3.

dirSlide dirSlide

Fig. 3. Slide move.

A compression pushes one module m1 into the space of an adjacent module
m2. The atoms of m1 literally fill the spaces between those of m2. Any part of
the robot attached to m1 will be displaced by one unit along the same direction.

The k-tunnel move compresses a leaf module into the robot, and decompresses
another module out into a leaf position. See Figure 4; the dotted squares are
the two modules involved. The parameter k denotes the number of branches
(or bends) in the path between the two modules. During this move, modules
attached to the branches will shift. This issue is addressed later on. The move
takes O(k) parallel steps, but in our uses k will always be a small constant.

Fig. 4. Tunnel move.

3.1 Staircase Move

Let the origin of an axis-aligned rectangle be its lower-left corner. The staircase
move transforms a rectangle of dimensions k1×k2 modules to one of dimensions
k2× k1, both sharing the same origin C. Connectivity to the rest of the robot is
through the atom at the origin, and thus that atom cannot move. Without loss



5

of generality, we can assume that k1 ≥ k2; otherwise, we invert the sequence of
operations described.

First, we move every row of modules to the right using a slide move, as
in Figure 5(b). Second, we move every column that does not touch the top or
bottom border of the bounding box down using a slide move, as in Figure 5(c).
Finally, we move every row to the left using a slide move, as in Figure 5(d). Note
that the sliding motions of each step are executed in parallel.

k1

k2

k2

k1 + k2
2

k2

k1

(a) (b) (c) (d)

Fig. 5. Staircase move in three parallel steps.

If we require that the transformation between rectangles takes place within
the bounding box of the source and target configurations, we can modify the
above procedure without much difficulty. This modification is omitted in the
present version of this paper.

3.2 Elevator Move

The elevator move transports a rectangle by k units between two vertical strips.
Figure 6(a) shows the initial configuration in which a rectangle is to be trans-
ported vertically downward. First we detach the top half of the rectangle from
the bottom half B. Furthermore, B detaches from the vertical strip on the right.
Let R be the rightmost column of k atoms along the left vertical strip, together
with the atoms to the left of B. We detach R to its left, except at the very
bottom, and detach R above, thus creating a corner with B. Then we contract
R vertically, thereby pulling B downward half way; see Figure 6(b). The top
of the rectangle maintains the connectivity of the robot. Afterward, B attaches
to the right vertical strip and detaches from R, which is now free to expand
and re-attach to the top, as in Figure 6(c). Now R detaches from the bottom
and contracts upwards. It re-connects to B at the bottom, as in Figure 6(d).
In the last step, shown in Figure 6(e), B detaches from the right side, and R
expands, thereby moving B all the way to the bottom. At this point, half of the
rectangle has reached the target position. It now assumes the role of maintaining
connectivity, and the process can be repeated for the top half of the rectangle.

3.3 Corner Pop

Consider a rectangle R of k1×k2 module units, where without loss of generality
k1 ≤ k2. Let R be empty except for a single strip of modules on its left border



6

(a) (b) (c) (d) (e)

Fig. 6. Elevator move in O(1) parallel moves.

and a single strip along the bottom. The strips form a corner, as shown in
Figure 7(a).

The corner pop moves the modules in R to the upper and right borders of R.
During this corner pop, the modules at the top-left and bottom-right corners
of R do not move. It is assumed that only these positions connect to modules
outside R. Thus, this operation preserves the connectivity of the robot.

(a) (b) (c) (d) (e)

Fig. 7. Popping a corner in O(1) parallel moves.

We first create two staircases of height k1/2 at the two endpoints of the
horizontal strip, as in Figure 7(b). Next, we create a staircase of width k1/2
starting at the bottom of the vertical strip. During this move, the rightmost k1/2
modules of the horizontal strip also staircase so that they end up on the right
border of B, as in Figure 7(c). This creates two staircases of size k1/2, each in
the middle of the horizontal strip. We remove both staircases, as in Figure 7(d).
Finally, we clean up the two extra atoms that protrude using tunnel moves. This
suffices to transform the initial configuration into a symmetric canonical shape.

3.4 Parallel Tunnel Move

The parallel tunnel move takes as input a horizontal strip H of modules together
with, on the row immediately above, several smaller horizontal strips that have
no other connections. The move absorbs the top row of smaller strips into H and
pushes them out the side, thus extending H. Alternatively, the absorbed mass
can be pushed out anywhere else on top of H, provided the target space is free.
This move allows us to merge an arbitrary number of strips in the top row in
O(1) time.

The idea is to take all odd positions and perform 1-tunnel moves, i.e., absorb
the mass above and contract it under even positions. Then expanding them all
in parallel just pushes the mass out the side. To avoid disconnecting the robot,
the modules remaining on top will shift over during the expansion. A gap will



7

remain to the right of each such module, so we can repeat the procedure one
more time to complete the move.

Figure 8 illustrates part of the absorption. In the figure, each square rep-
resents a module, and grey areas are not occupied. Compressed modules are
represented as two parallelograms within a square. Note that the move leaves
the rightmost four highlighted modules unaffected, and the lower strip remains
attached to its left and right. This means that a module located on top of the
highlighted group can be absorbed at the same time in parallel.

As illustrated, it is assumed that the bottom horizontal strip is critically
connected to other parts of the robot at one position, and absorbed modules are
redirected away from that position. For 4 × 4 modules, this assumption is not
required, but the minor implementation differences are omitted.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8. Parallel tunnel move.

4 Reconfiguration

Here we assume that the initial and final configurations of the robot consist of
blocks of 32× 32 atoms. However we will split blocks to use regular modules of
4×4. We consider the definition of boundary to be determined by 4×4 modules,
not the larger initial blocks.

Our algorithm proceeds as follows. Let the initial robot R be placed on a grid
of unit blocks (of 32 × 32 atoms). On this grid we construct a minimal square
cell of side length 2c that contains the initial robot (length is measured in block
units). We recursively divide the cell into four subcells of length 2c−1. As a base
case, we take subcells of length 2.

In parallel, we reconfigure and merge groups of four subcells within the same
recursive depth. Thus in O(log n) iterations we will have merged back to our
original square. Consider a cell M . We will use the inductive hypothesis that
after merging its subcells, M will become a ring if there are enough modules, or
sparse otherwise. Furthermore, if two points on the boundary of M were initially
connected, the new configuration will ensure connectivity via the shortest path
through its boundary.

In the base case of our induction, we have to merge four subcells that are
either empty or full. We will obtain a ring if there is at least one full subcell.
One subcell contains 64 modules, which suffice to cover the boundary of M .
Reconfiguration can be done by tunneling each interior module iteratively (or
by the lemmas that will follow). Thus our hypothesis is preserved.



8

Lemma 1 Consider a cell M . If any subcell of M contained a backbone in the
original configuration, then there are enough modules to create a ring in M .
There are also enough modules if a path originally connected two subcell sides
that belong to the boundary of M but are not adjacent.

Proof. Consider the eight exterior sides of subcells of M as shown in Figure 9(a).
Let each of the sides Mi have length c (i.e. c modules fill the side of a subcell).
The total number of modules in the boundary of M is 8c−4. A subcell backbone
contains at least 8c modules and therefore suffices to cover the boundary.

Without loss of generality, suppose that a path begins on M1 and ends at
any side other than M1,M8,M2. Then we have enough modules to make a ring
in M , by similar counting as above. In fact to avoid having enough atoms, such
a path would have to remain within the lower two subcells. ut

Lemma 2 Let M1 and M2 be adjacent sparse subcells at the top of cell M . In
the original robot, there can be no path from the top border of M to the other
subcells (see Figure 9(b)).

Proof. A path from the top to the middle of M would contain enough atoms
to make both M1 and M2 rings. By the pigeon-hole principle, one of the two
subcells cannot be sparse. ut

M1 M2

M3

M4

M5M6

M7

M8

M

M1 M2

(a) (b)

Fig. 9. Connectivity issues.

Lemma 3 All side-branches along the common border of two cells that are rings
or sparse can be merged into at most two pieces per side, with O(1) moves.
Furthermore each side-branch touches one end of the border.

Proof. If one cell is a ring then the other side can use it as a platform for a
parallel tunnel move that will merge its side-branches into one piece. Otherwise,
for each connected component of side-branches (of which there are at most two;
one per corner) do the following.

Absorb as much as possible from side A to side B by sliding over into vacant
module positions. Thus the component has one side-branch in B. Shift (parallel
tunnel) the remainder of A towards the corner that the connected component
attaches to, using B as a platform. Thus A becomes one side-branch. Now (either
by a pop or by parallel-tunnel) bring back material from B to A to restore the
original numbers in each cell. Thus each connected component consists of at
most one side-branch from A and one from B. ut



9

Lemma 4 Suppose B is a boundary side of a cell that has been processed ac-
cording to Lemma 3. Let A be a branch that is in the near-boundary adjacent to
B, and has no connectivity purpose. We can absorb A into B, or B can be filled,
with O(1) moves.

Proof. By Lemma 3, B contains at most two side-branches, each attached to a
corner. If no modules in B are adjacent to A, we can use a 1-tunnel to move
one node (endpoint) of A into the position in B that is adjacent to the other
node of A. Then the rest of A can slide into B. Otherwise, if A is adjacent to
a side-branch in B, as in Figure 10(a), we do the following. Absorb parts of A
into empty positions of B, as in Figure 10(b). Thus we create a side-branch B1

which can be used as a platform to be extended by performing a parallel tunnel
move on what remains of A. If the extension causes B1 to reach a corner or join
to another side-branch in B, then B is full; see Figure 10(c). ut

For sparse cells, by repeatedly applying Lemma 4 and staircaising the remainder
of A to the near-boundary side adjacent to B, we obtain the following:

Corollary 5 If a branch A is positioned in the near-boundary of a sparse cell,
either A can be fully absorbed into the boundary, or the cell will become a ring.

(a) (b) (c)

Fig. 10. Absorbing a near-boundary branch into the boundary.

Let a merged cell contain four subcells that satisfy our induction hypoth-
esis. That is, they are either rings or sparse, and connectivity is ensured via
shortest paths along their boundaries. A merged cell becomes well-merged if it
is reconfigured to satisfy the induction hypothesis.

Lemma 6 Let M be a merged cell containing three or four subcell rings. Then
M can become a ring using O(1) moves. Thus M becomes well-merged.

Proof. First consider the case where M consists of four rings. The outer ring
structure is already in place. Use elevator moves to transfer any internal material
from the top two subcells as far down as possible. The resulting interior structure
on either side of the internal vertical subcell borders is a monotone terrain with
at most two height changes. Furthermore each height change is by one unit. The
internal borders can be staircased and incorporated into these terrains, which
can then be merged easily with parallel tunneling and sliding. To take care of
the possibly large height change between the left and right sides, we slide half
of the excess over and then use two staircase moves.



10

Second consider the case where M consists of three rings and a sparse subcell
S. We can quickly modify the “direction” of the interior structure in any ring
with a couple of staircase moves, so without loss of generality let S be at the
top-left of M . If the interior sides of S contain side-branches, we can apply
Corollary 5 to redistribute them to exterior sides or obtain a fourth ring. In the
former case, we are free to staircase the full sides of subcells adjacent to S in
order to fill the boundary of M (again using Corollary 5). Further redistribution
is nearly identical to the four ring case. ut

Lemma 7 If exactly two subcells of a merged cell M are rings, then M can
become well-merged using O(1) moves.

Proof. If the two sparse subcells are adjacent, then there is no critical connec-
tivity maintained through their common border, by Lemma 2.

Apply Corollary 5 to move side-branches in the sparse subcells to the bound-
ary of M . There is only one module that possibly cannot be moved, in the case
of two rings that exist in a diagonal configuration and must be connected. If a
new ring is created, we apply Lemma 6. Now the only branches along interior
borders of subcells belong to the two rings, with the possible exception of one
module at the middle of M . We can use corner pops and/or staircase moves and
Corollary 5 to move the interior ring sides to the boundary of M while main-
taining connectivity. This happens regardless of the relative position of the rings
or the presence of the extra module.

What remains is to maintain our shortest path requirement, if we still do not
have a ring in M . In this case, by Lemma 1 we know that there was no initial
backbone in M . Thus each connected component of robot within M “covers” at
most one corner (in other words there is at least one module gap per side).

Note that the modules in the two subrings alone nearly suffice to create a
ring in M . Four modules are missing. We can remove a strip of width 2 from
positions where we wish to have a gap in the boundary of M , and use parallel-
tunneling to position this material in the current gaps. Essentially we create a
temporary ring of width 2. Then the remaining material can be moved. ut

Lemma 8 If exactly one subcell S of a merged cell M is a ring, then M can
become well-merged using O(1) moves.

Proof. Without loss of generality let S be at the bottom-left of M . By Lemma 2,
in the original robot there was no path from the top border of M leading to either
of the bottom subcells. The same holds for the right border of M and the two left
subcells. Therefore the two interior borders between the three sparse subcells do
not preserve any connectivity. We may use Corollary 5 to move branches from
those interior borders to the boundary of M . Finally we can do the same for the
interior sides of S.

We may have to redistribute excess internal material from within S. If M
has become a ring, this is easy and has been discussed previously. Otherwise, we
can apply Corollary 5 to each full row of the internal ring structure. This can
be required at most eight times before a ring is created.



11

Our shortest path connectivity requirement is preserved directly, by the fact
that the internal borders where not necessary for connectivity. ut

Lemma 9 If no subcell of a merged cell M is a ring, then M can become well-
merged using O(1) moves.

Proof. By Lemma 2, we know that in the original robot configuration no path
existed from a side of M to either of the two subcells furthest from it. Therefore
all disjoint subgraphs maintained connectivity between at most two adjacent
external sides of subcells. More specifically, the first type of allowed path con-
nects points that are separated by a corner of M but are also inside the same
subcell. By induction we assume that these points are already connected along
the external boundary of their subcell. The second type connects points that are
on the same border side of M (possibly adjacent subcells). Again by induction
we know that they are already connected along the boundary of M . Therefore
our shortest path requirement is preserved.

All that remains is to remove excess material from inner borders of subcells.
This material consists of one or two branches per border, each of which is con-
nected to the boundary of M . These can be staircased and redistributed with
our standard procedures. ut

Theorem 10 Any source robot S can be reconfigured into any target robot T
with O(n log n) atom operations in O(log n) parallel steps, if S and T are con-
structed with blocks of 32× 32 atoms.

Proof. Every cell retains the modules that it initially contained and does not
interfere with the configuration of the robot outside the cell, until it is time to
merge with its neighbors. A temporary exception to this occurs during Lemma 3.
Therefore that step should be performed in a way so that no interference occurs
(i.e. perform only this operation during one time step). At every time step, we
merge groups of four cells, which by induction are either rings or sparse. By
Lemmas 6–9, these four cells merge into a ring or sparse cell. Thus we construct
a ring or sparse cell in O(log n) parallel time steps.

We show that the total number of operations is O(n log n). Each subcell
containing m atoms can involve O(m) parallel operations per time step. Because
there are O(1) time steps per level in the recursion, and all mi sum to n, the
total number of operations per recursion level is O(n).

Now consider the bounding box B of S. We construct the smallest square
B2 of side length 2c that contains S and has the same lower-left corner as B.
Our recursive algorithm takes place within B2. Now consider the last merge of
subcells in our algorithm. The lower-left subcell L could not have contained S,
because this would imply that B2 = L. Therefore there must have been a path in
S from the left side of B2 leading to the two rightmost subcells (or from bottom
to two topmost). This implies that S will become a ring (not sparse).

Because a ring of specific side length has a unique shape as a function of the
number of modules it contains, the resulting ring in B2 serves as a canonical
form between S and T . ut



12

5 Discussion

We briefly mention how to reduce the number of atoms in our modules and
initial blocks. To use 2×2 modules instead of 4×4, some of the basic operations
described in Section 3 become relatively complicated. For example, the staircase
move cannot be implemented via sliding, but instead involves a form of parallel
tunneling to break off strips that are one module wide, then using those as
carrying tools, etc. Corner pops also become particularly unattractive.

Reducing the block size by a factor of two has the result that we can no
longer rely only on rings and sparse cells to maintain the connectivity of any
orthogonal robot (graph). We obtain a small set of orthogonal shortcut trees
that must be taken into consideration when merging cells. In fact, reducing the
block size even further just results in more shortcut trees. The total number of
such shortcut shapes is a small constant. We conjecture that reconfiguration can
take place with 2× 2 modules and no block restriction.

We also believe that our results extend to the case of labeled robots, where
specific atoms (or at least modules) must reach particular locations. The details
remain to be verified.

Two main open questions remain. First, does a similar result hold in 3D?
Second, is O(log n) parallel steps optimal? We can, however, prove an Ω(log n)
lower bound for labeled robots, by a simple Kolmogorov argument: there are
Θ(n log n) bits of information in a typical desired permutation, and each parallel
move can be encoded in O(n) bits (for each robot in order, which sides perform
which operations), so we need Ω(log n) moves.

References

1. G. Aloupis, S. Collette, M. Damian, E. D. Demaine, D. El-Khechen, R. Flatland,
S. Langerman, J. O’Rourke, V. Pinciu, S. Ramaswami, V. Sacristán, and S. Wuhrer.
Realistic reconfiguration of telecube and crystalline robots (submitted). 2008.

2. G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland, S. Langerman,
J. O’Rourke, S. Ramaswami, V. Sacristán, and S. Wuhrer. Linear reconfiguration
of cube-style modular robots. In Proc. Intl. Symp. on Algorithms and Computation
(ISAAC 2007), volume 4835 of LNCS, pages 208–219, 2007.

3. Z. Butler, R. Fitch, and D. Rus. Distributed control for unit-compressible robots:
Goal-recognition, locomotion and splitting. IEEE/ASME Trans. on Mechatronics,
7(4):418–430, 2002.

4. Z. Butler and D. Rus. Distributed planning and control for modular robots with
unit-compressible modules. Intl. Journal of Robotics Research, 22(9):699–715, 2003.

5. D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with compressible unit
modules. Autonomous Robots, 10(1):107–124, 2001.

6. J. W. Suh, S. B. Homans, and M. Yim. Telecubes: Mechanical design of a module
for self-reconfigurable robotics. In Proc. of the IEEE Intl. Conf. on Robotics and
Automation, pages 4095–4101, 2002.

7. S. Vassilvitskii, M. Yim, and J. Suh. A complete, local and parallel reconfiguration
algorithm for cube style modular robots. In Proc. of the IEEE Intl. Conf. on Robotics
and Automation, pages 117–122, 2002.


