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Abstract

A graph G is a 2-tree if G = K3, or G has a vertex v
of degree 2, whose neighbours are adjacent, and G \ v
is a 2-tree. A characterization of the degree sequences
of 2-trees is given. This characterization yields a
linear-time algorithm for recognizing and realizing
degree sequences of 2-trees.
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1 Introduction

The degree sequence of a graph1 is the sequence2 of the
degrees of its vertices. If D is the degree sequence of
a graph G then G is a realization of D and G realizes
D. Determining when a sequence of positive integers
is realizable as a degree sequence of a simple graph
has received much attention. The earliest result, by
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1We consider graphs that are simple, finite, and undirected.
The vertex set of a graph G is denoted by V (G), and its edge
set by E(G). The subgraph of G induced by a set of vertices
S ⊆ V (G) is denoted by G[S]. G \ S denotes G[V (G) \ S].

2In this paper the term sequence will be used in place of
multiset.

Erdős and Gallai [10], characterizes degree sequences of
graphs. A non-increasing sequence of positive integers
d1, . . . , dn is realizable if and only if

∑n
i=1 di is even and∑p

i=1 di ≤ p(p − 1) +
∑n

i=p+1 min(p, di) for all p ≤ n.
Hakimi [12] and Havel [15] give a strengthening of the
result. In particular, they show that if a sequence is
realizable then it is realizable by a graph in which a
vertex of maximum degree is adjacent only to vertices
of the highest degrees among the remaining vertices.
Another generalization is derived by Cai et al. [4].

Degree sequences have been studied in connection
with, among others, generating random graphs, ex-
tremal graph theory, and graph decompositions. Much
work has gone into characterizing degree sequences of
particular classes of graphs. That a sequence of n posi-
tive integers is the degree sequence of a tree if and only
if it sums to 2n − 2 is a folklore result. Other graphs
families with known degree sequence characterizations
include split graphs [14, 20], C4-minor3 free graphs [21],
unicyclic graphs [1], cacti graphs [15], Halin graphs [2],
and edge-maximal outerplanar graphs [18]. The most
investigated class of graphs is that of planar graphs.
Despite the effort, no characterization of the degree
sequences of planar graphs is known, even for edge-
maximal planar graphs. Partial results are obtained in
[5, 13, 11, 16].

A graph G is a k-tree if either G is the complete
graph on k + 1 vertices, or G has a vertex v whose
neighbourhood is a clique of order k and the graph
obtained by removing v from G is a k-tree. For example,
1-trees are trees.

In this paper we study the degree sequences of 2-
trees. 2-trees are planar, and are the edge-maximal
graphs with no K4-minor [3]. Also, all edge-maximal
outerplanar graphs are 2-trees, but not all 2-trees are
outerplanar (consider K2,3 for example). k-trees are
intrinsically related to treewidth, which is an important
parameter in the Robertson/Seymour theory of graph
minors and in algorithmic complexity; see the surveys

3A graph H is a minor of a graph G if H is isomorphic to a
graph obtained from a subgraph of G by contracting edges.



[3, 22]. In particular, a graph has a treewidth k if and
only if it is a subgraph of a k-tree. Thus k-trees are the
edge-maximal graphs of treewidth k.

The following theorem is the main result of this
paper. Let a〈b〉 denote the sequence 〈a, . . . , a〉 of length
b. A sequence of positive integers is even if all its
elements are even.

Theorem 1. Let D be a sequence of n integers. Let
n2 be the multiplicity of 2 in D. Then D is the
degree sequence of a 2-tree if and only if the following
conditions are satisfied:

(a)
∑

D = 4n − 6,

(b) max D ≤ n − 1,

(c) minD = 2 and n2 ≥ 2,

(d) D 6∈ {〈2〈n−4〉, d〈4〉〉 : d ≥ 5}, and

(e) n2 ≥ n
3 + 1 whenever D is even.

Moreover, if D satisfies Conditions (a)–(e) then given
any ` ∈ D such that ` ≥ 3, there exists a 2-tree that
realizes D in which a vertex of degree ` is adjacent to a
vertex of degree 2.

We denote by ∆ the set of all sequences satisfy-
ing Conditions (a)–(e) of Theorem 1 (hereafter simply
referred to as Conditions (a)–(e)).

Independently, Lotker et al. [19] also studied degree
sequences of 2-trees. Their main result is that if a
sequence D contains a 3, then Conditions (a)-(c) are
sufficient for D to be realizable as a 2-tree. This result
is an immediate corollary of Theorem 1. By counting
the number of sequences that satisfy (a)-(c) and contain
a 3, they show that nearly every sequence that satisfies
Conditions (a)-(c) is the degree sequence of some 2-tree.

A discussion on why it may be difficult to generalize
our results to k-trees for general k, can be found
in Section 6, along with more relevant results. The
remainder of this paper is organized as follows. In
Section 2 we consider degree sequences of trees. In
Section 3 we show that the degree sequence of every 2-
tree is in ∆. In Section 4 we show that every sequence in
∆ is the degree sequence of a 2-tree. Section 5 discusses
a linear-time algorithm for recognizing and realizing
degree sequences of 2-trees.

2 Degree Sequences of Trees

The following lemma is a strengthening of the folklore
characterization of the degree sequences of trees. We
make use of this strengthening in Lemma 13.

Lemma 1. Let D be a sequence of n positive integers.
Then D is the degree sequence of a tree if and only if∑

D = 2n−2. Moreover, if
∑

D = 2n−2, then for any
`, k ∈ D, D can be realized as a tree in which a vertex of
degree ` is adjacent to a vertex of degree k, unless n > 2
and ` = k = 1.

Proof. Every tree on n vertices has n−1 edges; thus its
degrees sum to 2n − 2.

Assume now that D is a sequence of positive
integers that sum to 2n − 2. Assume n ≥ 3, since for
n ≤ 2 the statement of the lemma is trivial.

We first prove by induction that D is the degree
sequence of a tree. For the induction step, n ≥ 3, notice
that since

∑
D = 2n − 2 and since n ≥ 3, there is at

least one 1 in D and at least one number, x, greater
than 1 in D. Create a new sequence D′ from D by
removing one 1 and reducing x by 1. D′ is comprised
of n− 1 ≥ 2 positive integers that sum to 2(n− 1)− 2.
By the inductive hypothesis, there exists a tree T ′ that
realizes D′. Adding a vertex to T ′ adjacent to a vertex
of degree x−1, creates a tree T on n vertices that realizes
D.

Now we prove the stronger claim. Assume without
loss of generality that ` ≤ k. Let T be a tree that
realizes D. Let y be a vertex of degree ` and r a vertex
of degree k in T . If ry is an edge in T we are done.
Otherwise, root T at r. Since n > 2, k ≥ 2, and thus
r has at least two children. Denote by Ty the subtree
of T rooted at y and by p the parent of y in T . Denote
by Tx a subtree of T rooted at a child x of r that does
not contain y; that is, y 6∈ V (Tx). Now swap Tx and
Ty, as illustrated in Figure 1. In particular, delete edge
rx, delete edge py, add edge px and finally add edge ry.
The resulting graph is a tree that realizes D and has a
vertex of degree ` adjacent to a vertex of degree k. �
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Figure 1: Illustration for the proof of Lemma 1.

3 Degree Sequences of 2-Trees are in ∆

Several well-known properties of 2-trees are summarized
in the following two lemmas, which can be proved by
elementary inductive arguments.



An ear in a graph is a vertex of degree 2 whose
neighbours are adjacent. A graph G is a 2-tree if
G = K3, or G has an ear u such that G′ := G \ u is
a 2-tree. In other words, every 2-tree G 6= K3 can be
obtained from some 2-tree G′ by adding a new vertex u
adjacent to two vertices, v and w, where vw ∈ E(G′).
We call this process attaching the vertex u to the edge
vw.

Lemma 2. Every 2-tree G on n vertices has the follow-
ing properties:

1. The sum of the degrees of the vertices in G
is 4n − 6.

2. The minimum vertex degree of G is 2.
3. Every vertex of degree 2 in G is an ear.
4. G has at least two ears.
5. No two ears in G are adjacent unless G = K3.
6. G has no K4-minor.
7. G is 2-connected.

Lemma 3. Let T be a tree on at least two vertices. Then
the graph G obtained by adding a new vertex adjacent
to each vertex of T is a 2-tree.

Lemma 2 along with Lemma 4 and Lemma 6
below prove that Conditions (a)-(e) are necessary in
Theorem 1; that is, the degree sequence of every 2-tree
is in ∆.

Lemma 4. For all d ≥ 5, the sequence D =
〈2〈n−4〉, d, d, d, d〉 is not the degree sequence of a 2-tree.

Proof. Suppose for the sake of contradiction that G is a
2-tree that realizes D. Removing all ears from G yields
a 2-tree G′ on four vertices. The only 2-tree on four
vertices is K4 minus an edge, as depicted by the thick
edges in Figure 2. Let v1, v2, v3, v4 be the vertices of
G′, where v1v3 is the only non-edge. Let di(= d) be the
degree of each vertex vi in G. Let xi,j be the number
of ears attached to each edge vivj . Then

d1 + d3 = (x1,4 + x1,2 + 2) + (x3,4 + x2,3 + 2) <

(x1,2 +x2,4 +x2,3 +3)+(x1,4 +x2,4 +x3,4 +3) = d2 +d4,

which is not possible since d1 + d3 = d2 + d4 = 2d. �

To prove that Condition (e) is necessary we need the
following lemma. Say an edge vw is close to a vertex u
if both v and w are adjacent to u.

Lemma 5. Let G be a 2-tree with n ≥ 4 vertices such
that each edge is close to at most one ear. Then G has
an edge close to exactly two vertices, one of which is an
ear.
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Figure 2: Illustration for the proof of Lemma 4.

Proof. Let S be the set of ears in G. Since n ≥ 4, no
two vertices in S are adjacent in G and |S| ≥ 2, by
Lemma 2. Consider the graph G′ := G \S. If G′ = K2,
then the edge of G′ is close to at least two ears in G,
which contradicts our assumption. Therefore, G′ has at
least three vertices and G′ is a 2-tree. No pair of vertices
in S attaches to the same edge of G′ in G, as again that
would contradict our assumption. Since G′ is a 2-tree,
it has an ear, v. Since v has degree greater than 2 in
G, there is an edge vw ∈ E(G′) such that exactly one
vertex, u, of S attaches to vw in G. Thus vw is close to
u in G. Since v is an ear in G′, vw is close to exactly
one vertex y in G′. Since every vertex in G′ has degree
greater than 2 in G, y has degree at least three. This
completes the proof, since vw is close to exactly u and
y in G. �

Lemma 6. Let G be a 2-tree with n vertices, of which
n2 are ears. If each vertex in G has even degree then
n2 ≥ n

3 + 1.

Proof. We proceed by induction on n. The base case
with n ≤ 4 is trivial. Now assume that n ≥ 5.

Suppose that G has an edge vw close to at least two
ears, x and y. Let G′ := G \ {x, y}. Since n ≥ 5, G′

is a 2-tree each vertex of which has even degree. Say
G′ has n′ vertices, of which n′

2 are ears. By induction
n′

2 ≥ n′

3 + 1. Now n2 ≥ n′
2 + 1, since going from G′

to G, we attach two ears, x and y, and delete at most
one (since v and w cannot both be ears in G′, unless
G′ = K3 in which case the result is immediate). Thus
n2 ≥ n′

3 + 1 + 1 > n
3 + 1.

Now assume that each edge is close to at most one
ear. By Lemma 5, G has an edge vw close to exactly
two vertices x and y, one of which, say x, is an ear.
Thus G[{v, w, y}] = K3. Consider the components
of G \ {v, w, y}. For each component C, exactly two
vertices in {v, w, y} have a neighbour in C (otherwise G
has a K4-minor or a cut vertex which is impossible by



Lemma 2). We say C attaches to the edge between that
pair of vertices. The only component that attaches to
vw is x (otherwise vw is close to more than two vertices).
These concepts are illustrated in Figure 3.

Let G′ be the subgraph of G induced by v, y and the
components of G\{v, w, y} that attach to vy. Let G′′ be
the subgraph of G induced by w, y and the components
that attach to wy, as illustrated in Figure 3. Then
degree of v is even in G′ since it differs by two from
its degree in G. Thus the degree of y in G′ is even
(otherwise G′ has exactly one vertex with odd degree
which is impossible). Hence all vertices in G′ have even
degrees. The same is true for G′′. Say G′ has n′ vertices,
of which n′

2 are ears, and G′′ has n′′ vertices, of which
n′′

2 are ears.

G′ G′′

y

v w

x

Figure 3: Illustration for the proof of Lemma 6.

Let t′ and t′′, respectively, be the number of ears in
G′ and G′′ that have degree at least 3 in G. Hence

(3.1) n2 ≥ (n′
2 − t′) + (n′′

2 − t′′) + 1 ,

where the “+1” is for x which is neither in G′ nor G′′.
The only vertices with differing degrees in G′ and G are
v and y. Since v and y are adjacent in G′, at most one
of v and y has degree two in G′ (unless G′ = K3). That
is, t′ ≤ 1 (unless G′ = K3 in which case t′ = 2). By
induction, n′

2 ≥ n′

3 + 1. Moreover, if G′ = K3 then
n′

2 = n′

3 +2. Thus n′
2− t′ ≥ n′

3 . Similarly, n′′
2 − t′′ ≥ n′′

3 .
By Equation (3.1), n2 ≥ n′

3 + n′′

3 +1 = n
3 +1 as desired.

�

The results of this section prove the following
lemma.

Lemma 7. The degree sequence of every 2-tree is in ∆.

4 The Elements of ∆ are the Degree Sequences
of 2-Trees

In this section we prove that every D ∈ ∆ is the degree
sequence of a 2-tree. Our proof is by induction on n,
the length of the sequence.

4.1 The Base Cases. In this section we give con-
structions for the base cases that occur in our inductive
proof. The proofs ignore the number of ears. How-
ever, Condition (a) and Lemma 2.1 imply that the con-
structed 2-trees have the correct number of ears.

Lemma 8. The sequence 〈2, 2, 2〉 is the degree sequences
of a 2-tree K3.

Lemma 9. Let D be a sequence of n integers such that
D ∈ ∆ ∩ {〈2〈n−2〉, x, y〉 : x, y ≥ 3}. Then there exists
a 2-tree that realizes D in which every vertex of degree
greater than 2 is adjacent to an ear.

Proof. From Condition (a) we know that 2(n − 2) +
x + y = 4n − 6 or, equivalently, x + y = 2n − 2. By
Condition (b) this implies that x = y = n−1. Thus, we
can create a 2-tree realizing D by starting from K3 and
attaching n − 3 vertices to one of its edges. Clearly, in
the resulting 2-tree, every vertex of degree greater than
2 is adjacent to an ear. �

Lemma 10. Let D be a sequence of n integers such that
D ∈ ∆ ∩ {〈2〈n−3〉, x, y, z〉 : x, y, z ≥ 3}. Then there
exists a 2-tree that realizes D in which every vertex of
degree greater than 2 is adjacent to an ear.

Proof. Create a 2-tree by attaching ei vertices to the
i-th edge of K3, where

e1 = 1
2 (x + y − z − 2) , e2 = 1

2 (x− y + z − 2) ,

e3 = 1
2 (−x + y + z − 2) .

It is straightforward to verify that the resulting 2-tree
has three vertices of degree x, y, and z, respectively,
and that all other vertices are ears.

It remains to verify that e1, e2 and e3 are non-
negative integers. These numbers are certainly integers
because, by Condition (a), 2(n−3)+x+ y + z = 4n−6
or, equivalently, x + y + z = 2n. Next we show that
e1 is non-negative. By Condition (b), x + y ≥ n + 1
and x + y − z ≥ 2. Thus x + y − z − 2 ≥ 0 and e1

is non-negative, as required. An analogous argument
shows that e2 and e3 are also non-negative. �

Lemma 11. Let D be a sequence of n integers such that
D ∈ ∆ ∩ {〈2〈n−5〉, x, d, d, d, d + x − 2〉 : x ≥ 3, d ≥ 5}.
Then there exists a 2-tree that realizes D in which every
vertex of degree greater than 2 is adjacent to an ear.

Proof. Begin with the 2-tree on five vertices, as depicted
by the thick edges in Figure 4(a), where one vertex, v1,
has degree 4, two vertices, v3 and v4, have degree 3 and
two vertices, v2 and v5, are ears. Attach one vertex to
v2v3 and one to v4v5, attach d− 4 > 0 vertices to v3v4,



attach x − 3 ≥ 0 vertices to v1v2 and attach d − 3 > 0
vertices to v1v5. Then the degree of v1 is d + x− 2, the
degree of v2 is x, and the degrees of v3, v4 and v5 are
d. All other vertices are ears, as required. In addition,
each vertex of degree greater than 2 is adjacent to an
ear. �
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Figure 4: Illustration for the proof of (a) Lemma 11,
and (b) Lemma 12.

Lemma 12. Let D be a sequence of n integers such that
D ∈ ∆ ∩ {〈2〈n−5〉, d〈5〉〉 : d ≥ 5}. Then there exists a
2-tree that realizes D in which every vertex of degree d
is adjacent to an ear.

Proof. Start with the 2-tree induced by the thick edges
in Figure 4(b). By Condition (a), 2(n−5)+5d = 4n−6;
that is, 5d = 2(n + 2). Thus d is even. Attach d−4

2 ≥ 1
vertices to each of the edges v1v2 and v1v5. Attach
d−6
2 ≥ 0 vertices to the edge v3v4, and d

2 > 0 vertices to
each of the edges v2v3 and v4v5. The resulting 2-tree G
has five vertices of degree d and each vertex of degree d
is adjacent to an ear. Thus G is a desired realization of
D. �

Lemma 13. Let D be a sequence of n integers with
minD > 1 and

∑
D = 4n − 6. If n − 1 ∈ D, then

for any `, k ∈ D, D can be realized as a 2-tree in which
a vertex of degree ` is adjacent to a vertex of degree k,
unless n > 3 and ` = k = 2.

Proof. No sequence of integers greater than 1 sum to
4n − 6 if n < 3. If n = 3, only D = {2, 2, 2} meets the
criteria and the claimed lemma is correct by Lemma 8.
Therefore we may assume that n ≥ 4, ` ≥ k, and ` ≥ 3.

Let D′ be the sequence obtained from D by remov-
ing n− 1 from D and reducing each remaining number
by 1. D′ is comprised of n′ := n−1 ≥ 3 positive integers
that sum to 2n′ − 2.

First consider the case that ` = n − 1. By Lemma
1, D′ can be realized by a tree. By Lemma 3, we build a
2-tree that realizes D with one vertex of degree ` = n−1
adjacent to all other vertices.

Now consider the case that ` < n − 1. Then
k − 1, ` − 1 ∈ D′. Since ` − 1 ≥ 2, D′ can be realized
as a tree where a vertex of degree k− 1 is adjacent to a
vertex of degree ` − 1, as implied by Lemma 1. Again,
add a vertex v and an edge between v and each vertex
of the tree. By Lemma 3, the resulting graph G is a
2-tree that realizes D in which a vertex of degree k is
adjacent to a vertex of degree `. �

Lemma 14. Let D ∈ ∆ be a sequence of n integers. Let
n2 be the multiplicity of 2 in D. For any x, y ∈ D, such
that x ≥ 3 and x 6= y, if there exists an integer r such
that 1 ≤ r ≤ n2, x− r ≥ 2, y− r ≥ 2 and n− r−1 ∈ D,
then D can be realized as a 2-tree in which an ear is
adjacent to a vertex of degree x and a vertex of degree
y.

Proof. Let D′ be the sequence of length n′ obtained
from D by removing r 2’s from D and by reducing both
x and y by r. D′ is comprised of n′ = n − r integers
greater than 1 that sum to 4n′ − 6 and n′ − 1 ∈ D′.
Since x 6= y, at least one of x − r and y − r is greater
than 2. All this implies that Lemma 13 is applicable to
D′ with ` = x − r and k = y − r. Therefore, D′ can be
realized as a 2-tree G′ in which a vertex of degree x− r
is adjacent to a vertex of degree y − r. Attaching r ≥ 1
ears to that edge, gives a 2-tree that realizes D in which
an ear is adjacent to a vertex of degree x and a vertex
of degree y. �

4.2 The Induction. With the base cases out of
the way, we are ready for an inductive proof of the
sufficiency of Conditions (a)-(e) in Theorem 1.

Lemma 15. Suppose that D ∈ ∆. For each ` ∈ D such
that ` ≥ 3, there exists a 2-tree that realizes D in which
a vertex of degree ` is adjacent to an ear.

Proof. Let n denote the number of elements of D and
let nt denote the multiplicity of t in D.

We are given D and a particular value ` ∈ D. If
D meets the conditions of Lemmas 8, 9, 10, 11, 12, 13,



or 14 then we are done, and we say that D is a base
case. Otherwise, we proceed as follows. Below we select
a value k ∈ D such that k ≥ 3. Then we create a new
sequence D′ ∈ ∆ of length n′ < n to which we can
apply induction. From a realization of D′, we construct
a 2-tree that realizes D in which a vertex of degree ` is
adjacent to an ear and a vertex of degree k is adjacent
to an ear. The choice of k and the reduction needed
to obtain D′ depends on D and `. We distinguish the
following cases.
We say that D is flat if D has at most two distinct
elements. D is special if it is not flat and if one of the
following is true:

(a) D is even and n4 ≥ 3, or

(b) D is not even, n4 ≥ 3, and D has exactly two odd
numbers one of which is 3 and the other is x ≥ 5,
and ` = x.

Finally, D is typical if it is neither flat nor special.
Before describing how we choose k and perform a

reduction to D′, we make the following observations.

Observation 1. If D ∈ ∆ is flat and not a base case,
then D = 〈2〈n2〉, d〈nd〉〉 such that d ≥ 5, n2 ≥ 3d − 6,
nd ≥ 6 and n ≥ 3d.

Proof. Since D has at most two distinct elements, and
by Condition (c), one element is 2, D = 〈2〈n2〉, d〈nd〉〉,
for some d ≥ 2. If d = 2 then D = 〈2, 2, 2〉 by
Condition (a), and D is the base case in Lemma 8. Also
〈2, 2, 2〉 is the only sequence in ∆ with n ≤ 3. Now
assume that d ≥ 3 and n ≥ 4. Thus Condition (b)
implies nd ≥ 2, as otherwise 2(n − 1) + d = 4n − 6
which gives d ≥ n whenever n ≥ 4. Since D does not
meet the conditions of Lemmas 9 and 10, nd ≥ 4. Then
Condition (a) implies that d ≥ 4. Suppose that d = 4.
Condition (a) is equivalent to nd(d−4)+6 = 2n2 which
implies that n2 = 3. Since nd ≥ 4, that implies n ≥ 7.
Thus D = 〈2〈3〉, 4〈n−3〉〉 with n ≥ 7. This sequence
is excluded from ∆ by Condition (e). Thus we may
assume nd ≥ 4 and d ≥ 5. The case nd = 4 and d ≥ 5 is
excluded by Condition (d). The case nd = 5 and d ≥ 5
is handled in Lemma 12. Thus d ≥ 5 and nd ≥ 6 as
required.

Condition (a) when applied to D gives dnd +2n2 =
4(n2 +nd)− 6, which simplifies to n2 = nd

2 (d− 4)+6 ≥
3(d − 4) + 6 = 3d − 6 and n ≥ 3d. �

Let α be the minimum integer in D greater than 2.

Observation 2. If D ∈ ∆ is not a base case, then
n2 ≥ α − 1.

Proof. If α = 3 then Condition (c) gives n2 ≥ 2 =
α − 1. Otherwise, (as in the proof of Observation 1)
Condition (b) implies n − n2 ≥ 2 and thus there are at
least two elements of D greater or equal to α. Therefore,
Condition (a) gives 2n2 +α+α+4(n−n2−2) ≤ 4n−6
which simplifies to n2 ≥ α+α

2 − 1 ≥ α − 1, as required.
�

The value k is selected as follows. If D is flat,
k := α = d. Otherwise, choose k such that k 6= `.
In particular, if D is typical or D is special and even,
choose k := α. If ` = α, then redefine ` to be the
smallest number greater than α in D, thus reversing
the roles of ` and k. (We are allowed to do this since
the 2-tree realizing D that we construct has a vertex of
degree ` and a vertex of degree k and each is adjacent
to an ear). Otherwise, D is special and not even and we
choose k := 4. Thus unless D is flat, k < `. Also note
that whenever D is special, k = 4.

We now create a new sequence D′ of length n′ < n
to which we can apply induction.

• If D is flat, then create D′ by removing 2d − 7 2’s
and two d’s from D, and reducing one d by d − 2
and one d by d − 4. By Observation 1, nd ≥ 6,
d− 4 > 0 and n2 > 2d− 7. Thus D′ is well defined
and all of its elements are positive integers greater
than 1.

• If D is typical, then create D′ by removing k − 2
2’s from D, and reducing both ` and k by k − 2.
Observation 2, in particular having n2 ≥ α− 1 and
k = α, implies k − 2 < n2. Thus D′ is well defined
and all of its elements are positive integers greater
than 1.

• If D is special, then create D′ by removing two 2’s
and one 4 from D and reducing both ` and k by 2.
By the choice of k, k = α or k = 4. If k = α, then
Observation 2 implies k − 2 ≤ n2; and, if k = 4,
then Condition (c) implies k − 2 ≤ n2. Thus D′

is well defined and all of its elements are positive
integers greater than 1.

The proof of the following claim is left until later.

Claim 1. D′ ∈ ∆.

If D is flat, apply the inductive hypothesis to the
sequence D′ with the special value 4 to obtain a 2-tree
G′ in which a vertex v of degree 4 is adjacent to an ear
w. Attach d−4 > 0 vertices to vw and call one of them
u. Attach one vertex, q, to the edge wu. Attach one
vertex to the edge wq and d−3 > 0 vertices to the edge
uq. This construction is illustrated in Figure 5(a). The



resulting 2-tree G is a realization of D in which an ear is
adjacent to vertices of degree ` = d and k = d (consider
for example w and q).

Otherwise, if D is not flat, apply the inductive
hypothesis to the sequence D′ with the special value
`−k+2 ≥ 3 to obtain a 2-tree G′ in which a vertex v of
degree `− k + 2 is adjacent to an ear w. If D is typical,
attach k − 2 ≥ 1 vertices to the edge vw to obtain a
2-tree G, as illustrated in Figure 5(b). Otherwise, D is
special, first attach one vertex u to the edge vw. Then
attach one vertex to the edge vu and one to the edge wu,
as illustrated in Figure 5(c). In both cases the resulting
2-tree G is a realization of D in which a vertex, v, of
degree ` is adjacent to an ear and a vertex, w, of degree
k is adjacent to an ear. This completes the proof. �

It remains to prove Claim 1.

Proof of Claim 1. By the construction of D′, it is clear
that all elements in D′ are positive integers greater
than 1. We must show that D′ satisfies Conditions (a)-
(e). We know that D satisfies Conditions (a)-(e)
and that D does not satisfy the conditions of any
of Lemmas 8–14. Let n′ denote the number of ele-
ments of D′ and let n′

t denote the multiplicity of t in D′.

Proof that D′ satisfies Condition (a); that is,
∑

D′ =
4n′ − 6:

If D is flat, then n′ = n − 2d + 7 − 2 = n − 2d + 5.
Since D satisfies Condition (a),

∑
D′ = (4n−6)−2(2d−

7)− 2d− (d− 2)− (d− 4) = 4(n− 2d+5)− 6 = 4n′− 6.
If D is typical, then n′ = n−k+2. Since D satisfies

Condition (a),
∑

D′ = (4n − 6) − 2(k − 2) − (k − 2) −
(k − 2) = 4(n − k + 2)− 6 = 4n′ − 6.

Otherwise, D is special and n′ = n− 3 and
∑

D′ =
(4n − 6)− 2 · 2 − 4 − 2 · 2 = 4(n − 3)− 6 = 4n′ − 6.

Proof that D′ satisfies Condition (c); that is, minD′ = 2
and n′

2 ≥ 2:
It is clear from the construction that min D′ = 2 in

each case.
If D is flat, n′

2 = n2 − (2d − 7) + 1. Thus
Observation 1 implies n′

2 ≥ 2. If D is typical, then
α = k, and n′

2 = n2 − k + 2 + 1 = n2 − α + 3. Then
Observation 2, in particular, having n2 ≥ α− 1 implies
n′

2 ≥ α − 1 − α + 3 = 2. If D is special and even,
then α = k = 4, and n′

2 = n2 − 2 + 1 = n2 − 1. Since
n2 ≥ α − 1, n′

2 ≥ α − 2 = 2. Finally, consider the case
that D is special and not even. Then α = 3, k = 4,
and n′

2 = n2 − 2 + 1 = n2 − 1. Thus it is enough to
prove that in this case n2 ≥ 3. From Condition (a)
when applied to D and since D is special and not even,
we have 2n2 + 3 + 4(n − n2 − 2) + ` ≤ 4n − 6, which
simplifies to n2 ≥ `+1

2 . Since ` ≥ 5, n2 ≥ 3, as required.

Proof that D′ satisfies Condition (b); that is, max D′ ≤
n′ − 1:

Consider first the case that D is flat. Then
max D′ = d and n′ = n − 2d + 5. By Observation 1
n ≥ 3d. Thus d = maxD′ ≤ n′ − 5.

Now consider the case that D is typical. Then
n′ = n − k + 2. Assume for the sake of contradiction
that b ∈ D′ and b ≥ n′ = n − k + 2. If b 6∈ D, then
b = `−k+2 ≤ n−1−k+2 ≤ n−k+1 < n′ which is the
desired contradiction. Thus we may assume b ∈ D. We
will derive a contradiction by demonstrating that in this
case Lemma 14 would apply to D. Let b = n − r − 1.
b 6= n − 1 since Lemma 13 would apply to D, thus
r ≥ 1. Furthermore, since b ≥ n − k + 2, r ≤ k − 3.
By Observation 2, n2 ≥ α − 1. Having D typical then
implies n2 ≥ k− 1. Thus 1 ≤ r < n2. Having, r ≤ k− 3
implies k − r > 2 and ` − r ≥ ` − k + 3 > 2 since
` > k. Thus Lemma 14 with r := r, x := `, y := k,
and n − r − 1 = b applies to D, which is the desired
contradiction.

Now consider the case that D is special. Then we
know that n′ = n− 3, k = 4 and ` ≥ 5. Assume for the
sake of contradiction that b ∈ D′ and b ≥ n′ = n − 3.
If b 6∈ D, then b = ` − 2 ≥ n − 3. That however is not
possible, since it implies that ` = n − 1 ∈ D, in which
case Lemma 13 would apply to D. Thus we may assume
b ∈ D, and b = n − r − 1, where either r = 1 or r = 2.
Thus 1 ≤ r ≤ n2, and k − r ≥ 2, since k = 4. Similarly,
` − r ≥ 3 since ` ≥ 5. Thus Lemma 14 with r := r,
x := `, y := k, and n− r − 1 = b applies to D, which is
the desired contradiction.

Proof that D′ satisfies Condition (d); that is, D′ 6∈
{〈2〈n′−4〉, d〈4〉〉 : d ≥ 5}:

If D is flat or special D, then n′
d ≥ 1. Thus if D′ ∈

{〈2〈n′−4〉, d, d, d, d〉 : d ≥ 5} then D is typical. However,
in that case D ∈ {〈2〈n−5〉, α, d, d, d, d + α − 2〉 : α ≥ 3}
which is not possible since Lemma 11 would apply to
D.

Proof that D′ satisfies Condition (e); that is, if D′ is
even, then n′

2 ≥ n′

3 + 1:
An even degree sequence is bad if it satisfies Condi-

tions (a)-(d) but not Condition (e). We need to prove
that D′ is not bad. We start with the following obser-
vation.

Observation 3. If D′ does not satisfy Condition (e);
that is, if D′ is bad, then n′

4 ≥ 4.

Proof. Since D′ satisfies Condition (a), 4n′− 6 ≥ 2n′
2 +

4n′
4 + 6(n′− n′

4 − n′
2) which simplifies to n′

2 ≥
n′−n′

4+3
2 .
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Figure 5: The induction step when (a) D is flat, (b) D is typical, (c) D is special.

If D′ is bad, then n′
2 < n′

3 + 1, by definition. Thus
n′−n′

4+3
2 ≤ n′

2 < n′

3 + 1, and consequently n′−n′
4+3

2 <
n′

3 + 1 giving n′
4 > n′+3

3 . Since D′ is even and satisfies
Conditions (a)-(c), the only such sequences with n′ ≤ 5
elements are 〈2, 2, 2〉 and 〈2, 2, 2, 4, 4〉. However, these
sequences are not bad, and thus n′ ≥ 6. Therefore,
having n′

4 > n′+3
3 implies that n′

4 ≥ 4. �

We are now ready to prove that D′ is not bad; that
is, that D′ satisfies Condition (e). To do so, it suffices
to demonstrate that n′

4 ≤ 3, by Observation 3.

Case 1. D is flat: By Observation 1, d ≥ 5, and thus
there is exactly one 4 in D′. Therefore D′ is not bad.

Case 2. D is typical and even: Then n′
4 ≤ n4 + 1.

Since D is typical, n4 ≤ 2. Thus n′
4 ≤ 3 and by the

Observation 3 D′ is not bad.

Case 3. D is typical and not even: If D has at least
three odd numbers, or k(= α) is even, or ` is even, then
D′ is not even and thus is not bad. If D′ is bad, then
n4 ≥ 3 since n′

4 ≤ n4 + 1 and since each bad sequence
has at least four 4’s. Thus the only remaining case is
that n4 ≥ 3, α = 3 (since α is odd and 4 ∈ D), ` is
odd and D has exactly two odd numbers. Then ` 6= 3,
since in that situation we would have chosen k = 3 and
would have changed ` to 4 (reversing the roles of ` and
k). However, in that case k would be even which was
ruled out above. Thus k = x where x is odd and x ≥ 5.
However, in that case D would be special and not even.

Case 4. D is special and even: Then n′ = n − 3 and
n′

2 = n2 − 2 + 1 = n2 − 1. Since D ∈ ∆, n2 ≥ n
3 + 1.

Thus n′
2 + 1 ≥ n′+3

3 + 1 which simplifies to n′
2 ≥ n′

3 + 1.
Therefore, D′ is not bad.

Case 5. D is special and not even: Then 3 ∈ D′ and D′

cannot be bad.
We have verified that D′ satisfies Conditions (a)–

(e), thus completing the proof of the claim. �

Together, Lemma 7 and Lemma 15 prove Theorem 1.

5 Algorithmics

Theorem 1 provides an easy O(n) time algorithm for
recognizing the degree sequences of 2-trees simply by
verifying Conditions (a)–(e). When a sequence is
realizable as a 2-tree G, the proof of Lemma 15 leads
to an O(n) time algorithm for constructing G that we
sketch here.

First, observe that the elements of D are all integers
in {2, . . . , n − 1} and can therefore be sorted in O(n)
time [6]. We can then represent the sequence D using
run-length encoding. That is, we use a list of pairs
{(di, ri) : 1 ≤ i ≤ p} where ri is the multiplicity of the
element di in D. We keep this list sorted by the dj values
at all times during the algorithm. (Here p is the number
of distinct values in D.) Along with this encoding we
keep two counters. The counter n =

∑p
i=1 ri is the

number of elements in the sequence and the counter n0

is the total number of odd values in D.
The inductive proof in Lemma 15 results in a

recursive algorithm that makes O(n) recursive calls.
Each invocation takes as input the sequence D and a
pointer to the node in the linked list containing the pair
(di, ri) with di = `. An invocation performs four steps:

1. check if the sequence D conforms to any of the base
cases in Lemmas 8–14,

2. determine whether D is flat, typical or special,

3. select a value k ∈ D, and

4. remove some number of 2’s, 4’s and/or d’s from D
and reduce the values of at most two other elements



in D before recursing.

Note that each base case in Lemmas 8–12 has a run-
length encodings of O(1) size, and thus can be checked
in O(1) time. The base case of Lemma 13 does not
necessarily have a run-length encoding of O(1) size, but
can be checked in O(1) time by checking if dk = n − 1.
Lemma 14 also does not necessarily have a run-length
encoding of O(1) size but it can be verified that, if
the conditions of Lemma 14 hold then they hold with
n − r − 1 being selected from among the three largest
values in D. Thus, the conditions of Lemma 14 can
be checked in O(1) time by considering (at most) dp,
dp−1, dp−2, and r1(= n2). Thus, in O(1) time we can
check if any of the base cases described in Lemmas
8–14 apply to the sequence D. Furthermore, each of
the constructions in the base cases are explicit and can
easily be accomplished in O(n) time. Whether D is flat
can be determined in O(1) time since a flat sequence
has a run-length encoding with at most two elements.
Whether D is special can be determined by counting
the number of 4’s in D (which is given by r2 or r3) and
by checking if D contains exactly two odd numbers, one
of which is 3. This can also be done in O(1) time by
checking the values of d2 and no.

The value k ∈ D can be selected in O(1) time since
a careful inspection of the proof reveals that k is either
d2 or d3.

Finally, 2’s, 4’s and d’s can be removed from the
sequence in O(1) time by reducing the values of r1,
r2 and/or r3 as appropriate. Reducing the values of
k and ` causes these values to move forward in the
run-length encoding. (Recall that our list must remain
sorted according to the di values.) However, this can
easily be implemented in O(k) time and causes the sum
of the sequence to decrease by 2k − 4. Since the initial
sum of the sequence is 4n− 6 this means that the total
time spent on reducing values during all steps is O(n).
Thus, the entire algorithm runs in O(n) time.

6 Conclusion

Prior to this work, the degree sequences of k-trees were
characterized for k = 1 only, that is for trees. In this
paper, we settle the k = 2 case. An obvious direction
for future work is to characterize the degree sequences
of k-trees for k ≥ 3. We conclude this paper with some
arguments highlighting why, in the general case at least,
this may be difficult.

A related, and less well-known concept, is that of a
degree set. The degree set of a graph is the set of the
degrees of its vertices. Unlike degree sequences, degree
sets contain no information about the multiplicities of
the degrees. Kapoor et al. [17] characterized the degree

sets of n-vertex simple graphs, n-vertex trees, n-vertex
outerplanar graphs, and n-vertex planar graphs. Degree
sets of k-trees have been studied by Winkler [23, 24] and
Duke and Winkler [9, 8, 7] who prove that all but finitely
many degree sets are realizable by k-trees..

Characterizing degree sequences is more difficult
than characterizing degree sets. A characterization of
the degree sets for a class of graphs, can be inferred
from a characterization of the degree sequences for that
class. For example, Theorem 1 implies immediately that
a set of integers S is the degree set of some 2-tree if
and only if the minimum element in S is 2, which is
a result of Duke and Winkler.4 They also characterize
the degree sets of 3-trees and 4-trees as the sets with
minimum element 3 and 4 respectively, except for the
set {4, 7, 8} which is not realizable as a 4-tree. Despite
their effort however, no characterization of the degree
sets of k-trees is known, suggesting that characterizing
degree sequences of k-trees may be complicated. To
appreciate the difficulty, even in the case of degree sets,
consider the following result by Duke and Winkler [9]:
Let S := {k, k + d − 1, k + d + r − 1} for some positive
integers k ≥ d + r. Then, for r < d, S is the degree
sequence of some k-tree if and only if d ≡ 1 (mod r).
For r = d, S is the degree set of some k-tree if and only
if d = 2. For r > d, no set of necessary and sufficient
conditions has been found.
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