
Image Features

Image features

Image features, such as edges and interest points, provide rich information on
the image content. They correspond to local regions in the image and are fun-
damental in many applications in image analysis: recognition, matching, recon-
struction, etc. Image features yield two different types of problem: the detection
of area of interest in the image, typically contours, and the description of local
regions in the image, typically for matching in different images. In any case, they
relate to the differential properties of the intensity function, for instance the gra-
dient or the laplacian that are used to detect intensity discontinuities that occur at
contours.

Example: the intensity function around a step edge and its first and second derivatives.
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1 Definitions

Linear Filtering
The linear filtering of an image consists in convolving its intensity function I(x, y)
with a function h(x, y) called impulse response of the filter.

I ′(x, y) = h(x, y) ∗ I(x, y),

I ′(x, y) =
∫ +∞

−∞

∫ +∞

−∞
h(u, v)I(x− u, y − v)du dv,

I ′(x, y) =
∫ +∞

−∞

∫ +∞

−∞
h(x− u, x− v)I(u, v)du dv,

In the discrete case:

I ′(x, y) =
+H/2∑

u=−H/2

+H/2∑
v=−H/2

h(u, v)I(x− u, y − v).

where H corresponds to the filter mask dimension.

The Image Gradient
The (intensity) gradient of an image is the vector∇I(x, y) defined by:

∇I(x, y) = (
∂I(x, y)

∂x
,
∂I(x, y)

∂y
)t.

It is characterized by a magnitude m and a direction φ in the image :

m =
√

(
∂I(x, y)

∂x

2

+
∂I(x, y)

∂y

2

),

φ = arctan(
∂I(x, y)

∂y
/
∂I(x, y)

∂x
).

+ The gradient direction maximizes the directional derivative.

+ The directional derivative of I(x, y) in the direction d is:

∇I(x, y) · d.

+ The gradient of a filtered image is:

∇I ′(x, y) = ∇(I(x, y)∗h(x, y)) = ∇I(x, y)∗h(x, y) = I(x, y)∗∇h(x, y).
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The Image Laplacian
The laplacian of an image with intensity I(x, y) is defined by:

∇2I(x, y) =
∂2I(x, y)

∂x2
+
∂2I(x, y)

∂y2
.

+ Invariant to image rotations.

+ The laplacian is often used in image enhancement to increase contour ef-
fects:

I ′(x, y) = I(x, y)− c∇2I(x, y).

+ Higher sensitivity to noise than the gradient.

+ The laplacian of a filtered image:

∆I ′(x, y) = ∆I(x, y) ∗ h(x, y) = I(x, y) ∗∆h(x, y).

Separable Filters
A filter with impulse response h(x, y) separable along the x and y axis is a filter
for which:

h(x, y) = hx(x) hy(y),

hence for the filtering of an image:

I ′(x, y) = h(x, y) ∗ I(x, y),

I ′(x, y) = hy(y) ∗ (hx(x) ∗ I(x, y)),
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and the derivatives:

∂I ′(x, y)

∂x
= I(x, y) ∗ (

∂hx(x)

∂x
hy(y)),

∂I ′(x, y)

∂y
= I(x, y) ∗ (hx(x)

∂hy(y)

∂y
),

∆I ′(x, y) = I(x, y) ∗ (∆hx(x)hy(y) + hx(x)∆hy(y)),

The main interests of separable filters are to:

1. Transform bi-dimensional filtering of an image into two mono-dimensional
filtering.

2. Reduce complexity: for a convolution with a filter of size H , complexity is
2H instead of H2.

3. Allows recursive implementation of the filter.

Edge detection
Two main strategies:

1. Gradient strategy: detection of the local extrema in the gradient direction.

2. Laplacian strategy: detection of zero-crossing.

+ These strategies rely on the fact that edges correspond to 0-order disconti-
nuities of the intensity function.

+ The derivative computation requires a pre-filtering of the images.v For in-
stance: linear filtering for zero mean noises (e.g. white Gaussian noise and
Gaussian filter) and non-linear filtering for impulse noise (median filter).

The existing approaches differ then with respect to the method used to estimate
derivatives of the intensity function:

1. Finite differences.

2. Optimal filtering.

3. Prior intensity function model.
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2 Estimating derivatives with finite differences
An image is discrete by nature, hence early approaches approximated derivatives
using differences:

∇uI(u, v) = I(u, v)− I(u− n, v),

where:
∇uI(u, v) = I(u+ n, v)− I(u− n, v),

with, in general, n = 1.

Such derivatives are computed by convolving the image with a mask of differ-
ences.

2.1 Roberts Operators (1962)

h1 =

[
1 0
0 −1

]
h2 =

[
0 1
−1 0

]

+ φ = arctan(I ∗ h2/I ∗ h1) + π/4.

+ High sensitivity to noise due to the (small) mask size.

2.2 Prewitt Operators

h1 = 1/3

 −1 0 1
−1 0 1
−1 0 1

 h2 = 1/3

 −1 −1 −1
0 0 0
1 1 1


Gradient Masks in x et y.

+ The convolution of the image by the above masks corresponds to the com-
putation of the derivatives of the image filtered by a separable filter h:

h(x, y) = h(x) h(y),

with: h = 1
3
[1 1 1] et d = ∇h = [−1 0 1]. En effet :

h1(x, y) = d(x) s(y),

h2(x, y) = s(x) d(y),
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+ Directionnal Prewitt Masks:

h3 = 1/3

 0 1 1
−1 0 1
−1 −1 0

 , h2 = 1/3

 −1 −1 0
−1 0 1
0 1 1

 ,
the gradient direction corresponds then to the mask giving the maximal re-
sponse.

The estimation of the laplacian can proceed in a similar way by convolving
the image with a mask of differences. For the second order derivative the 1D
difference mask is: ∇2 = [1 − 2 1]. Thus in 2D: 0 0 0

1 −2 1
0 0 0

 +

 0 1 0
0 −2 0
0 1 0

 =

 0 1 0
1 −4 1
0 1 0

 .
or:  1 1 1

1 −8 1
1 1 1

 .
Discrete Laplacian masks.

+ Estimating the laplacian requires 1 convolution, the gradient 2.

+ Invariance by rotation.

2.3 Sobel Operators (1972)

h1 = 1/4

 −1 0 1
−2 0 2
−1 0 1

 h2 = 1/4

 −1 −2 −1
0 0 0
1 2 1



+ Very popular (present in most standard image manipulation softwares).

+ Corresponds to the convolution of the image with:[1 2 1] ∗ [−1 0 1].

+ Directional masks exist but are computationally expensive.
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2.4 Scharr Operators (1999)
Numerous local image descriptors consider gradient orientations using, for exam-
ple, histograms. With the aim to improve the estimation of such gradient orienta-
tion, Scharr proposed the following operators obtained by optimizing the gradient
estimation in the Fourier domain:

h1 = 1/16

 −3 0 3
−10 0 10
−3 0 3

 h2 = 1/16

 −3 −10 −3
0 0 0
3 10 3



+ Scharr operators are recognized as more accurate than Sobel’s one (e.g. in
OpenCV for instance).

+ Corresponds to the convolution of the image with:[3 10 3] ∗ [−1 0 1] where
[3 10 3] is a truncated discrete Gaussian filter, as for Sobel, but with a dif-
ferent standard deviation.
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Figure 1: Sobel 3x3 on: the boat image; the boat image with impulse noise ; the
noisy image filtered with a 3x3 Gaussian filter and a 3x3 median filter.
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Figure 2: From left to right: test image with I = sin(r2) ; Sobel 3x3 angle errors;
Scharr 3x3 angle errors; error colors.

Figure 3: Test image with impulse noise; Scharr 3x3 ; Scharr 3x3 after 3x3
median filtering; error colors.

Figure 4: Sobel 5x5 on original test image ; Sobel 5x5 on test image with impulse
noise ; Sobel 5x5 after 3x3 median filtering.
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3 Differentiation with optimal filtering
The derivatives obtained with local convolution operators are local approxima-
tions. Consequently they present a high sensitivity to noise. Another strategy that
was investigated consists in considering convolution with larger supports and with
optimal filters with respect to feature localization and detection in the image. First
the problem is reduced to a one dimensional estimation:

Let h be the (1D) smoothing filter then:

• I(x, y) ∗ h(x) ∗ h(y) is the smooth image,

• I(x, y)∗h′(x)∗h(y), I(x, y)∗h(x)∗h′(y) are the images of the derivatives
along the x and y directions,

• I(x, y) ∗ (h′′(x) ∗ h(y) + h(x) ∗ h′′(y)) is the image of the Laplacian.

Note that the filter can often be implemented recursively (i.e. the output in one
pixel can be determined with its neighbors values) with 1D convolutions (separa-
ble filter).

Example: convolution of a step edge intensity function with a Gaussian and its first and second derivatives.
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3.1 Gaussian filter

The Gaussian filter is one of the most popular smoothing filter. It writes:

h(x) = c e−x
2/2τ2 ,

where c is a normalizing coefficient, e.g. c = 1/
∫
h(x) = 1/

√
(2π)σ.

The first derivative writes: h′(x) = −c x
τ2
e−x

2/2τ2 .

The function −x e−x2/2.

The second derivative: h′′(x) = c (x
2

τ2
− 1) e−x

2/2τ2 .

It was shown by Canny that the first derivative filter present good properties for
edge detection. This filter was introduced by Marr and Hildreth for the estimation
of the Laplacian of the intensity function in the image: the Laplacian of Gaussian
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The function (x2 − 1) e−x
2/2.

or LoG operator.
Considering r = x2 + y2:

h(r) = c e−r
2/2τ2 ,

hence:

h′′(r) = c (
r2

τ 2
− 1) e−r

2/2τ2 ,

h′′(x, y) = c
1

τ 2
(
x2 + y2

τ 2
− 1) e−(x

2+y2)/2τ2 ,

where c normalizes to zero the sum of filter elements.

+ The LoG operator is non-directional (or isotropic).

+ Zero crossings are easier to determine than extrema.

+ Noise sensitivity is increased.

+ No information on the edge orientation.
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The LoG operator.
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3.2 Other filters
Other similar filters with with optimal properties with respect to edge detection
have been proposed. For instance Deriche proposed following smoothing filter:

h(x) = k(α |x|+ 1)e−α|x|,

with:

k =
(1− e−α)2

(1 + 2αe−α − e−2α)
.

And:
h′(x) = −k′xe−α|x|,

k′ =
(1− e−α)2

e−α
.

+ Deriche filter is directional (anisotropic).

Impulse response.

Impulse response of the derivative filter.
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4 Edge Detection
Image edges come from:

• discontinuities of the reflectance function (textures, shadows),

• depth discontinuities (object edges),

and are characterized by discontinuities of the intensity function in images.
Feature detection is therefore based on the observation of the derivatives of the
intensity function and on the detection of local extrema of the gradient or zero
crossing of the laplacian. A critical difficulty in this process results from the noise
in the images. Such noise is present in each step of the acquisition process, e.g.
sensor sensitivity and digitization.

Different types of edges: step, peak, roof.

The filters presented before allow to estimate the derivatives of an image, i.e.
gradients and Laplacians. However they do not identify edges in the image and
an additional step is required for that purpose.

4.1 Gradient approaches
Edges are characterized by local extrema of the gradient hence a first naive strat-
egy is:

1. Estimate the gradient norm at all pixels in the image;

2. select pixels for which the gradient norm is above a user defined threshold.

+ This does not efficiently discriminate edges from noise.

The computational approach that is traditionally used was introduced by Canny
in 1986 and is still present in most standard image manipulation tools (OpenCV,
Matlab, GIMP/Photoshop plugins, etc.). It is composed of the following steps:

1. Noise reduction: filter the image with a Gaussian filter (5x5 for instance).
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2. Non-maximum suppression: extract local gradient extrema in the gradient
direction. This means that for a pixel p values of the gradient along the
line going through p and in the gradient direction are maximal in p. In
practice, and due to pixel discretization, 4 directions are evaluated (0deg,
45deg, 90deg and 135deg).

3. Hysteresis thresholding: this step relies on a connexity assumption. The
principle is to use 2 thresholds for the gradient norms: tlow and thigh. Pixels
belonging to an edge are supposed to satisfy the 2 following conditions:

(a) The pixel gradient norm is above tlow,

(b) The pixel is connected, through a pass composed of pixels with gradi-
ent norms above tlow, to at least one pixel with a gradient norm above
thigh.

Figure 5: Hysteresis thresholding
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Figure 6: Boat image; Scharr 3X3; Deriche; Deriche with simple treshold; Canny-
Deriche (hysteresis thresholding)
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4.2 Laplacian approaches
Edges are characterized by zero crossings of the Laplacian. Edge detection in that
case proceeds therefore in 3 steps:

1. Image smoothing.

2. Zero crossing detection. Pixels for which the Laplacian changes its sign are
identified (positive-negative or negative-positive transitions).

3. Thresholding of zero crossings with high amplitudes (with hysteresis for
instance).

Figure 7: Boat image: Laplacian filter; DoG filter
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5 Features points
Detecting features in images such as interest points is a preliminary step to nu-
merous computer vision applications. Interest points usually correspond to dou-
ble discontinuities of the intensity function. As for contours, these discontinuities
may result from discontinuities of the reflectance function or from depth discon-
tinuities. Interest points are for instance: corners, T-junctions or points with high
texture variations.

Different types of interest points:
corners, T junctions and high texture variations

Some advantages of interest points with respect to contours:

1. More reliable source of information since the intensity function is better
constraint.

2. Robust to occlusions (either visible or fully occluded).

3. No chaining required ( 6= contours !).

4. Present in a majority of images ( 6= contours !).
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5.1 Different approaches
A number of approaches have been proposed to detect features (interest points) in
images. They roughly fall into 3 categories:

1. Contour based approaches: the idea is to first detect contours. Interest points
are then extracted along contours as points with maximal curvatures or in-
tersections between contours.

2. Intensity based approaches: the idea is to directly consider the intensity
function in images and to detect point where discontinuities occur.

3. Model based approaches: a model of the intensity function shape around an
interest point is assumed and sought for in the image.

Ô Approaches from the second category were the most successful over the
last decades. Reasons include: the independence with respect to contour
detection (i.e. stability) and the independence with respect to the type of
interest point (i.e. versatility).
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6 Interest Points: Moravec detector
An intuitive detector was proposed by Moravec in 1980 and has served as the basis
for further and more evolved detectors. The idea is to consider the neighborhood
of a pixel in the image (a window) and to determine mean changes of the intensity
function when the neighborhood is moving in several directions. More precisely
we consider the following function:

E(x, y) =
∑
u,v

w(u, v) |I(x+ u, y + u)− I(u, v)|2,

that measures the mean of the intensity function variations when the neighborhood-
window w is moved by (x, y), where:

• w specifies the neighborhood-window considered (value 1 inside the win-
dow and 0 outside);

• I(u, v) is the intensity value at pixel (u, v).

2

1

3

The different situations considered by the Moravec detector.

Computing the values of the function E in the three following situations (see
the above figure), we get:

1. The intensity is approximately constant in the area considered: E will take
small values in any direction (x, y).

2. The area considered includes a contour: E will take small values for dis-
placements along the contour direction and high values for displacements
perpendicular to the contour.

3. The are considered includes a corner or an isolated point: E will take high
values in any direction (x, y).

Consequently, the principle of the Moravec detector is to search for the local
maxima (thresholding) of the minimal value of E over all pixels.
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7 Interest Point: Harris detector
The Moravec detector works within a limited context and suffers from several
limitations. Harris and Stephen identified some of these limitations and proposed
in 1988 a popular detector that correct them: the Harris detector. The limitations
of the Moravec detector taken into account by the Harris detector are:

1. The Moravec detector response is anisotropic due to the discretization of the
moving directions that can be performed for intensity changes (45 degrees
steps). To improve this aspect, one can consider the Taylor expansion of the
intensity function around a pixel (u, v):

I(x+ u, y + v) = I(u, v) + x
δI

δx
+ y

δI

δy
+ o(x2, y2).

Hence:
E(x, y) =

∑
u,v

w(u, v)[x
δI

δx
+ y

δI

δy
+ o(x2, y2)]2,

Neglecting the term o(x2, y2) (which is valid for small displacements), we
obtain the following analytical expression:

E(x, y) = Ax2 + 2Cxy +By2,

with:

• A = δI
δx

2 ⊗ w

• B = δI
δy

2 ⊗ w

• C = ( δI
δx

δI
δy

)⊗ w

2. The Moravec detector response is noisy as a result of the neighborhood
considered. The window function w(u, v) is indeed a binary filter (values
0 or 1) applied over a rectangular neighborhood. To improve this aspect,
Harris et Stephen proposed to used a Gaussian filter instead:

w(u, v) = exp−(u2 + v2)/2σ2.

3. Finally, the Moravec detector responds too strongly to contours due to the
fact that only the minimal value of E in each pixel is considered. To take
into account the general behavior of E locally, let us first write:

E(x, y) = (x, y) ·M · (x, y)t,
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with:

M =

[
A C
C B

]
.

The matrix M describes the local behavior of the function E: the eigenval-
ues λ1 and λ2 of this matrix correspond to the principal curvatures associ-
ated to E locally and:

• both curvatures are low, the region under consideration presents an
almost constatn intensity.
• One curvature is high while the other is low: the region contains a

contour.
• Both curvatures are high: the intensity is varying in all directions

which characterize a corner.

λ

λ

Corners
λ1 ∼ λ2

E increases in all directions

2

1

λ1 >> λ2

Edge

Edge

λ1 << λ2

Flat region

E constant in 

all directions

Classification of pixels with respect to curvatures/eigenvalues λ1 and λ2.

Consequently, Harris and Stephen proposed the following operator to detect
corners in an image:

R = Det(M)− kTrace(M)2

with : Det(M) = AB − C2 et Trace(M) = A+B.

Values of R are positive around a corner, negative around a contour and low
in a region of constant intensity.
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8 Interest Point: SIFT
The SIFT algorithm (Scale Invariant Feature Transform) was proposed by David
Lowe (university of British Columbia), in 1999 with the purpose of both detec-
tion and description of interesting area in the image (local features). It should be
noticed that description is different from detection and consists in characterizing
local image regions with the aim to recognize such regions (to match) in other
images of the same scene. This algorithm has been very popular, not only in the
computer vision community, and several modifications exist.

The general idea of SIFT is to find features that are invariant to several trans-
formations: image rotation and scale, illumination, noise and minor changes in
viewpoint.

8.1 Detection

Mikolajczyk (2002): The local LoG (Laplacian of Gaussians) extrema give the intrinsic scale.

The principle of the detection is therefore to find extrema in the scale-space rep-
resentation of the image I(x, y). This continuous representation is defined by the
following function:

L(x, y, σ) = gσ ∗ I(x, y)

where gσ is the Gaussian filter gσ = 1
2πσ2 e

−(x2+y2)

2σ2 and σ represents the scale pa-
rameter.
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Consecutive Gaussian filtering of an image.

In order to find these extrema, and instead of considering the LoG function that
is computationally expensive, the DoG (Difference of Gaussians) is used instead
as an approximation:

DoG(x, y) = L(x, y, kσ)− L(x, y, σ)

The extrema are then pixels which are local minima/maxima of the DoG images
across scales, i.e. with respect to their 8 spatial neighbors in the current scale im-
age as well as their 9 neighbors in the next scale image and the 9 in the previous
scale image.

Pixel Neighbors

scale

The extrema obtained this way are numerous. In order to filter them:

1. Candidates with low contrast are eliminated.

2. Responses corresponding to contours are eliminated by considering the Hes-
sian of the DoG image and an operator close the Harris one.

8.2 Description
The description of a region of interest around a corner is represented by the his-
togram of gradient orientations in the region.
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In the above case, the region is split into 4 subregions with 8 directions (the
length in each direction represents the sum of the gradient modules having that
direction in the subregion). Thus the description vector has 32 values. In typical
applications, descriptors have 128 values: 4x4 subregions and 8 bins for direc-
tions.

Results with Harris and Sift.
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