Physics-based Animation

lionel.reveret@inria.fr

2013-14

Basic Concepts

- Particles dynamics
- Differential Equations Solver
- Constraints
- Rigid body dynamics
- Collisions
- \Rightarrow see Pixar Courses (Baraff & Witkin)

http://www.pixar.com/companyinfo/research/pbm2001

Constraints

 Constraints forces (general case) $\ddot{q} = W(Q + Q_C)$ $C(q)=0 => \dot{C} = J\dot{q} = 0 => \ddot{C} = J\ddot{q} + J\dot{q}=0$ = JW(Q+Q_c) + $\dot{J}\dot{q}$ = 0 $=> JWQ_{c} = -\dot{J}\dot{q} - JWQ$ Q_{C} doesn't work (no energy introduced) : $Q_{C}^{t} \dot{q}=0$ $=> Q_{C} = J^{t} \lambda$ = JWJ^t $\lambda = -J\dot{q} - JWQ - (k_sC + k_dC)$ Solving for λ provides Qc, new forces to integrate

Constraints

• Alternative formulation $\ddot{C}=0 => J\ddot{q} = - J\dot{q} + (damping)$ $M\ddot{q} = Q + J^t \lambda$

$$\begin{pmatrix} M & -J^{t} \\ J & 0 \end{pmatrix} \begin{pmatrix} \mathbf{\dot{q}} \\ \mathbf{\lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{Q} \\ \mathbf{b} \end{pmatrix}$$

Sparse matrix

Reduced coordinates

• Use a more appropriate set of explicit parameters instead of implicit constraints

$$q = q(u)$$
 => $\dot{q} = J\dot{u} => \ddot{q} = J\dot{u} + J\ddot{u}$
M $\ddot{q} = Q + Q_c$ and $Q_c \cdot \dot{q} = 0$ (no work)

applying J^t makes Q_c disappears: (J^tMJ) \ddot{u} + (J^tMJ) \dot{u} – J^tQ = 0

Lagrangian Mechanics

 Reduced coordinates (vs Maximal Coordinates + constraints)

$$\mathcal{L} = T - V.$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} + \frac{\partial V}{\partial q_j} = 0.$$

T : kinetic energy *V* : potential from conservative forces qj : any motion parameter (position, angle, etc), Note: one equation for each parameter

> For a rigid body under gravity field only: $T = \frac{1}{2} v^t M v + \frac{1}{2} \omega^t I \omega$ and V = mgh

Collision contacts

 $V^+_{rel} = - \epsilon V^-_{rel}$

=>

solves for j

=> update velocities, restart solver

Goal : solve for f_i

Resting contacts

- Three conditions to satisfy
 - 1. No inter-penetration between objects
 - Forces are strong enough to push objects apart
 - 2. Forces must not stick objects together
 - No extra forces if objects separates (no « glue »)
 - 3. Forces must be 0 if contact breaks

Resting contact

- Relative distance $d_i(t) = n_i(t) \cdot [p_a(t) - p_b(t)]$ $\dot{d}_i(t_c) = n_i(t_c) \cdot [\dot{p}_a(t_c) - \dot{p}_b(t_c)] + 2 \dot{n}_i(t_c) \cdot [\dot{p}_a(t_c) - \dot{p}_b(t_c)]$
- Condition 1 is It can be shown that

• Condition 2 is

Condition3 is

 \Rightarrow solved with a Quadratic Programming solver (QP)

Character animation

- Skeleton
 - Set of rigid bodies => limbs
 - Connected together => joints
- Two approaches
 - Maximal coordinates (Newton)
 - ☺ limbs : independent, 6D inertial frame space coordinates
 - ☺ joints : set of constraints
 - Reduced coordinates (Lagrange)
 - ☺ limbs : local joint orientations
 - ☺ joints : no need for constraints
 - ⊗ complex derivatives

Dynamics controllers

Compute external torques
Proportional Derivative (PD Controller) + FSM

$$\tau = k_p (\theta_d - \theta) - k_v \dot{\theta}$$

available code

SIMBICON: Simple Biped Locomotion Control, KangKang Yin Kevin Loken, Michiel van de Panne, SIGGRAPH 2007.

http://www.cs.ubc.ca/~van/papers/Simbicon.htm

Dynamics controllers

• Compute external torques through optimization

Martin de Lasa, Igor Mordatch, Aaron Hertzmann, <u>Feature-Based Locomotion Controllers</u>, SIGGRAPH 2010

Fluids

Navier-Stokes formula

$$\begin{aligned} \nabla \cdot \mathbf{u} &= 0 \\ \frac{\partial \mathbf{u}}{\partial t} &= -(\mathbf{u} \cdot \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f}, \end{aligned}$$

- *u* : velocity field of the fluid (grid)
- p : pressure field
- *v* : *viscosity*
- f : external forces

Mass and Momentum are conserved

Fluids

• From fine grain modeling...

http://physbam.stanford.edu/~fedkiw/

• ... to a more phenomenological approach

http://www-evasion.imag.fr/Membres/Fabrice.Neyret/

Fluids

• Available code

www.dgp.toronto.edu/~stam/reality/Research/pub.html

- « Stable Fluids », Jos Stam, SIGGRAPH'99
- Real-Time Fluid Dynamics for Games », Jos Stam, Proceedings of the Game Developer Conference, March 2003

Physics-based Animation

- How to start ?
 - Write your own engine (physics + solver)
 - especially for fluids or large collision problems
 - Start from an existing engine
 - especially for character animation and work on controller, but you may want to tune your own solver
 - SDK
 - PhysX (NVidia), www.nividia.com
 - Havok (Intel), <u>www.havok.com</u>
 - Open source
 - ODE (Open Dynamics Engine), <u>www.ode.org</u>
 - Bullet, bulletphysics.org
 - A comparative paper:
 - LocoTest: Deploying and Evaluating Physics-based Locomotion on Multiple Simulation Platforms, Stevie Giovanni and KangKang Yin. Lecture Notes in Computer Science, volume 7060 (Proc. Motion in Games 2011), pp. 227–241, Springer-Verlag Berlin Heidelberg.