All documents are allowed. The different sections below are independent. Answers should be concise and justified.

1 Projective Geometry (6 points)

1. Why is the Euclidean geometry not sufficient to model image formation?
2. How many vanishing points the perspective projection of the edges of a cube define ?
3. Assume that a point P_{i} is linearly interpolated between two points P_{1} and P_{2} in 3D. Is the perspective projection of P_{i} the same linear interpolation between the projection of P_{1} and P_{2} ? Same question with an orthographic projection?
4. What are the homogeneous coordinates of the line of \mathcal{P}^{2} going through the points with homogeneous coordinates $(1,0,0)$ and $(0,1,0)$ respectively ?

2 Image Mosaics (4 points)

Assume that a camera acquires images while rotating about its optical center and assume further that the intrinsic parameter matrix K is the identity matrix.

1. Is the transformation between 2 such images projective or affine ?
2. Do we need 4 or 3 pairs of corresponding points to estimate this transformation?
3. We want to build a cylindrical panorama using several images of that camera, detail the different steps of an algorithm for doing so.

3 Perspective Projection (6 points)

Consider a perspective projection with focal length f :

1. In such a projection why do objects further away appear smaller in the image ?
2. Given an object (perspectively) projected in an image how should I modify the focal length of the projection so that the size of the object in the image is divided by 2 ?
3. Assume that two spheres S_{1} and S_{2} of radius R and $2 R$ are aligned along the optical axis (i.e. their centres lie on the optical axis) at distances D_{1} and $D_{2} \geq D_{1}$ from the projection center respectively.
(a) Show that we observe two nested discs.
(b) Assume D_{1} fixed, above which distance D_{2} will S_{2} be fully occluded by S_{1} ?
(c) Assume the distance between the two spheres to be fixed, i.e. $D_{2}-D_{1}$ is constant, at which distance D_{1} will S_{2} and S_{1} project onto the same disc ?

4 3D Modeling (4 points)

1. What is the photoconsistency criterion ?
2. Assume that a textured 3D model is available. How can we perceive this model in 3D using a 2D device such as a mobile phone.
3. q 1 and q 2 are two image observations of a 3 D point Q . Due to the noise, these points do not correspond to the exact projection of Q . As a result, the viewing lines of q 1 and q 2 do not intersect in 3D.
(a) A good geometric approximation for Q is the point closest to both viewing lines. How can we estimate that approximation?
(b) Is there a closed form solution for it ?
