All documents are allowed. The different sections below are independent. Answers should be concise and justified.

1 Projective Geometry (5 points)

- 1. What is the set of points of the projective plane \mathcal{P}^2 that are not present in the affine plane \mathcal{A}^2 of points with homogeneous coordinates (x, y, 1)? Can this set be defined with homogeneous coordinates ?
- 2. What are the homogeneous coordinates of the point of \mathcal{P}^2 intersection of the lines with homogeneous coordinates (0, 0, 1) and (0, 1, 0) respectively ?
- 3. Does this point belong to the line at infinity associated to \mathcal{A}^2 ?
- 4. Assume that C is the centroid of a set of n 2D points {P_i}_{i∈[1..n]} in the affine space A², i.e. C is the mean 2D position of {P_i}_{i∈[1..n]}. Is this centroid preserved by an affine transformation of the plane ? by a projective transformation of the plane ?

2 Plane Projection (5 points)

The perspective projection of the point P with homogeneous coordinates (x, y, z, 1) onto the image point with coordinates (u, v) can be modeled with:

$$(wu, wv, w)^t \sim K[R - Rt](x, y, z, 1)^t,$$
 (1)

where K is the intrinsic parameter matrix:

$$K = \begin{bmatrix} k_u f & 0 & u_0 \\ 0 & k_v f & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

R a rotation matrix in \mathbb{R}^3 and t the 3×1 position vector of the camera center in the world coordinate frame.

- 1. We consider points in the plane with equation z = 0, what kind of transformation becomes the above projection (1) with such points ?
- 2. Assume that the image plane is parallel to the plane with equation z = 0.
 - (a) What kind of transformation is the above projection (1) with the points in the plane z = 0?
 - (b) What is the minimum number of point correspondences required to estimate the transformation and how can we compute it given this number of correspondences ?
 - (c) Consider two lines in the plane z = 0 that are parallel to the x axis. Where does the projections of those two lines intersect in the image plane ?

2.1 Image Mosaics (4 points)

Assume that a camera acquires images while rotating about its optical center and consider the case where the camera takes **two** images. Between the two images, it carries out a rotation about the Y axis:

$$\mathsf{R} = \begin{pmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{pmatrix}$$

As for the intrinsic parameters of the camera, we suppose that they correspond to a simplified calibration matrix whose only unknown is the focal length α :

$$\mathsf{K} = \begin{pmatrix} \alpha & 0 & 0\\ 0 & \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

It is known that there exists a projective transformation (homography) that links the two images. The goal of this question is to estimate the transformation from a single point correspondence.

- 1. Write down the homography H in terms of the two unknowns, the rotation angle β and the focal length α .
- 2. Develop a method (formulas) for computing these two unknowns, from a single point match: q_1 in the first image and q_2 in the second one.

3 3D Modeling (6 points)

- 1. We consider the estimation of the visual hull associated to n 2D silhouettes:
 - (a) Depict shortly an algorithm that uses a voxel grid of size d^3 .
 - (b) What is the theoretical maximum number of *inside silhouette* tests required ? Is there a theoretical minimum number of such tests ?
- 2. Depending on the number of viewpoints available we can perceive a scene in 2D or 3D using adapted displays. How can we perceive 3D with a mobile phone, a stereo screen or a head mounted display ? explain how they differ.
- 3. In order to build 3D models from images some methods assume a a prior model of the observed scene, e.g. human body models. What is the advantage of such a strategy ? its limitations ?
- 4. q1 and q2 are two image observations of a 3D point Q. Due to the noise, these points do not correspond to the exact projection of Q. As a result, the viewing lines of q1 and q2 do not intersect in 3D.
 - (a) Describe an approach to compute, along the viewing line of q1, the depth λ_1 of the 3D point on this line that is closest to the viewing line of q2.
 - (b) Is there a closed form solution for λ_1 or do we need to solve a system of equations ?