All documents are allowed. The different sections below are independent. Answers should be concise and justified.

1 Projective Geometry (5 points)

1. What is the set of points of the projective plane \mathcal{P}^{2} that are not present in the affine plane \mathcal{A}^{2} of points with homogeneous coordinates $(x, y, 1)$? Can this set be defined with homogeneos coordinates?
2. What are the homogeneous coordinates of the point of \mathcal{P}^{2} intersection of the lines with homogeneous coordinates $(0,0,1)$ and $(0,1,0)$ respectively ?
3. Does this point belong to the line at infinity associated to \mathcal{A}^{2} ?
4. Assume that C is the centroid of a set of $n 2 \mathrm{D}$ points $\left\{P_{i}\right\}_{i \in[1 . . n]}$ in the affine space \mathcal{A}^{2}, i.e. C is the mean 2D position of $\left\{P_{i}\right\}_{i \in[1 . . n]}$. Is this centroid preserved by an affine transformation of the plane? by a projective transformation of the plane?

2 Plane Projection (5 points)

The perspective projection of the point P with homogeneous coordinates $(x, y, z, 1)$ onto the image point with coordinates (u, v) can be modeled with:

$$
\begin{equation*}
(w u, w v, w)^{t} \sim K[R-R t](x, y, z, 1)^{t}, \tag{1}
\end{equation*}
$$

where K is the intrinsic parameter matrix:

$$
K=\left[\begin{array}{ccc}
k_{u} f & 0 & u_{0} \\
0 & k_{v} f & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

R a rotation matrix in \mathbb{R}^{3} and t the 3×1 position vector of the camera center in the world coordinate frame.

1. We consider points in the plane with equation $z=0$, what kind of transformation becomes the above projection (1) with such points ?
2. Assume that the image plane is parallel to the plane with equation $z=0$.
(a) What kind of transformation is the above projection (1) with the points in the plane $z=0$?
(b) What is the minimum number of point correspondences required to estimate the transformation and how can we compute it given this number of correspondences ?
(c) Consider two lines in the plane $z=0$ that are parallel to the x axis. Where does the projections of those two lines intersect in the image plane?

2.1 Image Mosaics (4 points)

Assume that a camera acquires images while rotating about its optical center and consider the case where the camera takes two images. Between the two images, it carries out a rotation about the Y axis:

$$
\mathbf{R}=\left(\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right)
$$

As for the intrinsic parameters of the camera, we suppose that they correspond to a simplified calibration matrix whose only unknown is the focal length α :

$$
\mathrm{K}=\left(\begin{array}{lll}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

It is known that there exists a projective transformation (homography) that links the two images. The goal of this question is to estimate the transformation from a single point correspondence.

1. Write down the homography H in terms of the two unknowns, the rotation angle β and the focal length α.
2. Develop a method (formulas) for computing these two unknowns, from a single point match: \mathbf{q}_{1} in the first image and \mathbf{q}_{2} in the second one.

3 3D Modeling (6 points)

1. We consider the estimation of the visual hull associated to n 2D silhouettes:
(a) Depict shortly an algorithm that uses a voxel grid of size d^{3}.
(b) What is the theoretical maximum number of inside silhouette tests required? Is there a theoretical minimum number of such tests ?
2. Depending on the number of viewpoints available we can perceive a scene in 2D or 3D using adapted displays. How can we perceive 3D with a mobile phone, a stereo screen or a head mounted display? explain how they differ.
3. In order to build 3D models from images some methods assume a a prior model of the observed scene, e.g. human body models. What is the advantage of such a strategy? its limitations ?
4. $q 1$ and $q 2$ are two image observations of a 3 D point Q . Due to the noise, these points do not correspond to the exact projection of Q . As a result, the viewing lines of q 1 and q 2 do not intersect in 3D.
(a) Describe an approach to compute, along the viewing line of q 1 , the depth λ_{1} of the 3D point on this line that is closest to the viewing line of q2.
(b) Is there a closed form solution for λ_{1} or do we need to solve a system of equations?
