All documents are allowed. The different sections below are independent. Answers should be concise and justified.

1 Projective Geometry (5 points)

1. What is the link beetween the affine plane \mathcal{A}^{2} of points with homogeneous coordinates $(x, y, 1)$ and the projective plane \mathcal{P}^{2} ?
2. What are the homogeneous coordinates of the line of \mathcal{P}^{2} going through the points with homogeneous coordinates $(0,0,1)$ and $(0,1,0)$ respectively ?
3. Where does this line intersects the line at infinity associated to \mathcal{A}^{2} ?
4. Assume that C is the centroid of a set of n points $\left\{P_{i}\right\}_{i \in[1 . . n]}$ in the affine space \mathcal{A}^{2}, i.e. C is the mean position of $\left\{P_{i}\right\}_{i \in[1 . . n]}$. Is this centroid preserved by an affine transformation of the plane? by a projective transformation of the plane?

2 Plane Projection (5 points)

The perspective projection of the point P with homogeneous coordinates $(x, y, z, 1)$ onto the image point with coordinates (u, v) can be modeled with:

$$
\begin{equation*}
(\alpha u, \alpha v, \alpha)^{t} \sim K[R-R t](x, y, z, 1)^{t}, \tag{1}
\end{equation*}
$$

where K is the intrinsic parameter matrix:

$$
K=\left[\begin{array}{ccc}
k_{u} f & 0 & u_{0} \\
0 & k_{v} f & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

R a rotation matrix in \mathbb{R}^{3} and t the 3×1 position vector of the camera in the world coordinate frame.

1. We consider points in the plane with equation $z=0$, what kind of transformation becomes the above projection (1) with such points ?
2. How many pairs of correspondences between world and image points are required to estimate this transformation?
3. Assume that the projection is an orthographic projection, e.g. $-R t=(0,0, f)^{t}$ with a focal length f that becomes infinite. What kind of transformation is the above projection (1) with the points $z=0$?
4. Assume that a sample of n pairs of matched point is required to estimate the projection and that a robust RANSAC strategy (see notes) is applied over $N>n$ pairs of matched points. Assume further that 90% of these matched pairs are inliers. How many samples must be picked in order to have 90% chance of getting a pure-inlier sample ?

3 Perspective Projection (5 points)

We consider in the following a perspective projection without image pixel transformation, i.e.:

$$
K=\left[\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \text { and with } R=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } t=(0,0,0)^{t}
$$

1. In this projection why do objects further away appear smaller in the image ?
2. Given an object (perspectively) projected in an image how should I modify the focal length of the projection so that the size of the object in the image is divided by 2 ?
3. Assume that a cube of edge dimension e is observed with a perspective camera at distance d (from the projection center to the cube center) and a focal length f. Assume further that the cube is aligned with the image plane so that its projection forms 2 nested squares. (a) What is the exact length difference between the 2 square edges in the image ? (b) How should we modify the projection so that the smaller square gets bigger in the image while keeping the bigger square dimension constant, i.e. reducing the perspective effect?

4 3D Modeling (5 points)

1. Considering a point on a shape silhouette in an image, can we tell whether the corresponding point in 3D is a convex, concave or saddle point on the observed shape ?
2. An algorithm estimates the visual hull associated to n silhouettes using a voxel grid of size d^{3}. What is the theoretical maximum number of inside silhouette tests required ? Is there a theoretical minimum number of such tests?
3. Depending on the number of viewpoints available we can perceive a scene in 2D or 3D using adapted displays. How can we perceive 3D with a mobile phone, a stereo screen or a head mounted display? explain how they differ.
4. In a multi-view stereo reconstruction, we seek for points that are photoconsistent, what does it mean to be photoconsistent and what are the assumptions made in such reconstruction?
5. A 4D model (hologram) is composed of shape, appearance and sometimes motion information, explain what are these information?
