3D Vision - Geometry1

Edmond Boyer

Contents

1. Projective geometry (ref. document available online)
2. Camera model or single view geometry

Projective Geometry

Perspective deformation can be modelled with 2D projective transformation

Projective geometry provides a mathematical formalism to describe the geometry of cameras and the associated transformations -> help designing computational approaches in visual computing.

Projective Geometry

Projective geometry generalizes definitions and properties, e.g. two lines always interesect, and encompasses affine and Euclidean geometries as subgroups of transformations.

Key Aspect -> Infinity is modeled in the projective geometry.

Projective Geometry - Definitions

Projective Space: A point of a real projective space \mathcal{P}^{n} is represented by a vector of real coordinates $X=\left[x_{0}, \ldots, x_{n}\right]^{t}$, at least one of which is non-zero. The $\left\{x_{i}\right\}$ s are called the projective or homogeneous coordinates and two vectors X and Y represent the same point when there exists a scalar $k \in \mathbb{R}^{*}$ such that:

$$
x_{i}=k y_{i} \forall i,
$$

which we will denote by:

$$
X \sim Y .
$$

The projective space \mathcal{P}^{2} associated to \mathbb{R}^{3}

Projective Geometry - Definitions

A projective basis is a set of $(n+2)$ points of \mathcal{P}^{n}, no $(n+1)$ of which are linearly dependent. For example:
is the canonical basis where the $\left\{A_{i}\right\}_{\mathrm{s}}$ are called the basis points and A^{*} the unit point.

Projective Geometry - Definitions

Projective Transformations: A matrix M of dimensions $(n+1) \times(n+1)$ such that $\operatorname{det}(M) \neq 0$, or equivalently non-singular, defines a linear transformation from \mathcal{P}^{n} to itself that is called a homography, a collineation or a projective transformation.

Projective transformations are the most general transformations that preserve incidence relationships, i.e. collinearity and concurrence.

Projective Geometry - Properties

Change of basis: Let $\left\{X_{0}, \ldots, X_{n+1}\right\}$ and $\left\{Y_{0}, \ldots, Y_{n+1}\right\}$ be 2 basis of P^{n}, then there exists a non-singular matrix M of dimension $(n+1) \times(n+1)$ such that:

$$
M \cdot X_{i} \sim Y_{i} \forall i,
$$

where M is determined up to a scale factor.
Changes of basis are projective transfornations.

Change of basis in \mathcal{P}^{2} or projective transformation between A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$.

Projective Geometry - Properties

Hyperplanes: Consider m points of \mathcal{P}^{n} that are linearly independent with $m<n$. The set of points in \mathcal{P}^{n} that are linearly dependent on these m points form a projective space of dimension $m-1$. When this dimension is equal to 1 , 2 and $n-1$, this space is called line, plane and hyperplane respectively.

Duality: The set of hyperplanes of \mathcal{P}^{n} is a projective space of dimension n. Any definition, property or theorem that applies to the points of a projective space is also valid for its hyperplanes.

Projective Geometry - Properties

Hyperplane at infinity: In \mathcal{P}^{2} any line L is the hyperplane at infinity for the affine space $\mathcal{A}^{2}=\mathcal{P}^{2} \backslash L$. In this affine space \mathcal{A}^{2}, all lines that share the same direction are concurrent on the line at infinity.

Projective Geometry - Properties

Conics: The affine classification of conics with respect to their incidences with the line at infinity. In the projective plane conics are all projective transformations of the circle

UGA Grenoble Alpes

Projective Geometry - Plane \mathcal{P}^{2}

Points and lines: points $A=\left[x_{A}, y_{A}, w_{A}\right]^{t}, B=\left[x_{B}, y_{B}, w_{B}\right]^{t}$ and $C=\left[x_{C}, y_{C}, w_{C}\right]^{t}$ are collinear if:

$$
\begin{gathered}
\left|\begin{array}{ccc}
x_{A} & x_{B} & x_{C} \\
y_{A} & y_{B} & y_{C} \\
w_{A} & w_{B} & w_{C}
\end{array}\right|=0 \\
\Leftrightarrow l_{A B} \cdot x_{C}+m_{A B} \cdot y_{C}+n_{A B} \cdot w_{C}=\left[l_{A B}, m_{A B}, n_{A B}\right] \cdot\left[\begin{array}{c}
x_{C} \\
y_{C} \\
w_{C}
\end{array}\right] \\
\Leftrightarrow L_{A B}^{t} \cdot C=0
\end{gathered}
$$

Duality $L^{t} \cdot C$ can describe all lines L going through C or all points C along line L.
$L_{A B}$ is the line going through A and B and any point C that belongs to $L_{A B}$ statisfy $L_{A B}^{t} \cdot C=0$

Projective Geometry - Plane \mathcal{P}^{2}

Exercises

1. What is the point X intersection of the lines L_{1} and L_{2} ?
2. What is the line L going through the points X_{1} and X_{2} ?
3. Consider two lines $L_{1}=\left[l_{1}, m_{1}, n_{1}\right]^{t}$ and $L_{2}=\left[l_{1}, m_{1}, n_{2}\right]^{t}$, what is the point intersection of these two lines ? what does it represent?

Projective Geometry - Plane \mathcal{P}^{2}

Transf. group	Dof	Matrix	Deformation	Invariants
Euclidean	3	$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & T_{0} \\ \sin \theta & \cos \theta & T_{1} \\ 0 & 0 & 1\end{array}\right]$		length, area
Isometry	4	$\left[\begin{array}{ccc}\epsilon \cos \theta & -\sin \theta & T_{0} \\ \epsilon \sin \theta & \cos \theta & T_{1} \\ 0 & 0 & 1\end{array}\right]$	$\square \rightarrow\langle$	length ratio, angle, absolut
Affine	6	$\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ 0 & 0 & 1\end{array}\right]$		parallelism, area ratio, length ratio on a line, linear vector combinations
Projective	8	$\left[\begin{array}{lll}h_{1} & h_{2} & h_{3} \\ h_{4} & h_{5} & h_{6} \\ h_{7} & h_{8} & h_{9}\end{array}\right]$		incidence, collinearity, concurrence, cross-ratio

Transformation hierarchy

Projective Geometry - Plane \mathcal{P}^{2}

Exercises

1. How can we determine a homography H given 4 point correspondences ?
2. Show that if H is a homography that transforms points then the associated transformation for lines is: H^{-t}.
3. Show that affine transformations preserve parallelism but not projective transformations.
4. Show that collinearity and concurrence are preserved by projective transformations.

3D Geometry

3D elementary transformations

Translations: $\quad T=\left[\begin{array}{cccc}1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$

Rotations: $\quad R=R_{z} \cdot R_{y} \cdot R_{x}$,

- $\operatorname{det} R=1$,
- $R^{-1}=R^{t}$.

$$
\begin{aligned}
& R_{x}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \psi & -\sin \psi & 0 \\
0 & \sin \psi & \cos \psi & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{y}=\left[\begin{array}{cccc}
\cos \phi & 0 & \sin \phi & 0 \\
0 & 1 & 0 & 0 \\
-\sin \phi & 0 & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{z}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

3D Geometry

3D Geometry

Parallel projections: Orthographic projections

O is the origin, the projection is perpendicular to the image plane

$$
\left[\begin{array}{l}
X \\
Y \\
0 \\
1
\end{array}\right]=\underset{\text { Orthographic projection matrix }}{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

3D Geometry

Perspective projections

O is the projection centre, the optical axis the ray going through O and perpendicular to the image plane, f the focal length.

3D Geometry

Perspective projections

3D Geometry

Perspective projections

Using thales: $\mathrm{X} / \mathrm{x}=\mathrm{Z} / \mathrm{f}$ and $\mathrm{Y} / \mathrm{y}=\mathrm{Z} / \mathrm{f}$
Thus: $x=f X / Z, y=f Y / Z, z=f$.

3D Geometry

Perspective projections

Using thales: $\mathrm{X} / \mathrm{x}=\mathrm{Z} / \mathrm{f}$ and $\mathrm{Y} / \mathrm{y}=\mathrm{Z} / \mathrm{f}$
Thus: $x=f X / Z, y=f Y / C, z=f$.

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right] \cdot \underset{\text { Perspective projection matrix }}{\left[\begin{array}{c}
X \\
Y \\
Z \\
Z / f
\end{array}\right]}=\left[\begin{array}{c}
X \\
Y \\
Z \\
{[}
\end{array} \sim\left[\begin{array}{c}
f X / Z \\
f Y / Z \\
f \\
1
\end{array}\right]\right.
$$

3D Geometry

Perspective projections

Exercises

1. Show that when the origin O is in the image plane along the optical axis, the perspective projection matrix becomes:
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 / f & 1\end{array}\right]$
2. What is then the link between the orthographic and perspective projections?
3. Circle projection: assume a circle of radius R located in plane parallel to the image plane, at a distance Z, and such that its center is on the optical axis. Show that its projection is a circle of radius $\mathrm{fR} /(\mathrm{Z}+\mathrm{f})$.
4. The circle is moved in a direction that belongs to the image plane, what becomes its projection ?

3D Geometry

Perspective projections

Parallel lines intersect at infinity at the same location which, once projected, defines a vanishing point.

3D Geometry

Perspective projections

La cène, Leonardo Da Vinci

Vanishing points in perspective paintings

3D Geometry

Perspective projections

For lines in a plane, vanishing points define a line called horizon line.

Single View Geometry

Camera Model: Projection parallel or perspective ?

Single View Geometry

In practice the mostly used camera model is the pinhole model:

Forsyth \& Ponce, computer vision book

And the full transformation from 3D to 2D is modeled as a projective transformation that includes a perspective projection.

Single View Geometry

The full transformation is composed of:

1. A rigid transformation between the world coordinate frame and the camera coordinate frame: Rw -> Rc.
2. A perspective projection into the retinal plane: $\mathrm{Rc}->\mathrm{Rr}$.
3. A 2 D transformation from retinal coordinates to image pixel coordinates: $\mathrm{Rr}->\mathrm{Ri}$

Single View Geometry

Retinal to image plane transformation:

$$
\left(\begin{array}{l}
u \\
v \\
f \\
1
\end{array}\right)=\left(\begin{array}{cccc}
k_{u} & 0 & 0 & u_{0} \\
0 & k_{v} & 0 & v_{0} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
f \\
1
\end{array}\right)
$$

where:

1. k_{u} et k_{v} are the scale factors in pixels $/ \mathrm{mm}$.

2. $\left(u_{0}, v_{0}\right)$ are the coordinates, in pixels, of the optical axis intersection with the retinal plane.

Single View Geometry

The global transformation:

$$
\left(\begin{array}{c}
w u \\
w v \\
w f \\
w
\end{array}\right)=\left(\begin{array}{cccc}
k_{u} & 0 & 0 & u_{0} \\
0 & k_{v} & 0 & v_{0} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right) \cdot\left(\begin{array}{ccc}
& & \\
& R & \\
& & \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Single View Geometry

The global transformation:

$$
\begin{aligned}
& \left(\begin{array}{c}
w u \\
w v \\
w f \\
w
\end{array}\right)=\left(\begin{array}{cccc}
k_{u} & 0 & 0 & u_{0} \\
0 & k_{v} & 0 & v_{0} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right) \cdot\left(\begin{array}{ccc}
& & \\
& R & T \\
& & \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \\
& \left(\begin{array}{c}
w u \\
w v \\
w
\end{array}\right)=\left(\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right) \cdot\left(\begin{array}{ccc}
& & \\
& R & \\
& & \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
\end{aligned}
$$

Single View Geometry

The global transformation:

$$
\left(\begin{array}{c}
w u \\
w v \\
w
\end{array}\right)=\left(\begin{array}{ccc}
k_{u} f & 0 & u_{0} \\
0 & k_{v} f & v_{0} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
& \\
& T
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

When pixels on the sensor are not rectangular:

$$
\left(\begin{array}{c}
w u \\
w v \\
w
\end{array}\right)=\left(\begin{array}{ccc}
k_{u} f & c \neq 0 & u_{0} \\
0 & k_{v} f & v_{0} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
& \\
& T \\
&
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Single View Geometry

The global transformation considered in practice (no distinction between scale factors and the focal length) :

$$
\begin{aligned}
M \sim\left(\begin{array}{ccc}
\alpha_{u} & c & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
& \\
& T \\
& \\
M & \sim\left(\begin{array}{ll}
K \cdot R & K \cdot T
\end{array}\right)=K \cdot\left(\begin{array}{ll}
R & T
\end{array}\right),
\end{array} .\right.
\end{aligned}
$$

Where:

1. K is the 3×3 intrinsic parameter matrix, i.e. the camera intrinsics.
2. $[R T]$ is the 3×4 extrinsic parameter matrix, i.e. the camera location.

A camera is therefore described by 11 parameters which corresponds the degree of freedom of a 3×4 projective matrix. The calibration of camera consists in estimating the matrix M and the camera parameters.

Single View Geometry

Exercises

1. M has 11 dof, how many 3D-2D correspondences are required to estimate M ?
2. Denoting \bar{M} the 3 x 3 matrix and m the 3 x 1 vector such that $M \sim(\bar{M} m)$. Show that the location C of the camera projection centre in the world coordinate frame is

$$
C=-\bar{M}^{-1} \cdot m
$$

3. Given an estimation of M by, e.g. calibration, how can the camera parameters be computed ?

Single View Geometry

Application: Coplanar points

Assume, without loss of generality, that points belong to the plane $z=0$, then:

$$
\left(\begin{array}{c}
w u \\
w v \\
w
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{u} & c & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
R_{11} & R_{12} & T_{x} \\
R_{21} & R_{22} & T_{y} \\
R_{31} & R_{32} & T_{z}
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right)
$$

Single View Geometry

Thus:

$$
\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right) \sim\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

The projection in this case is therefore a 2D projective transformation of the plane.

What can be deduced for the transformation between two perspectives projections of coplanar points?

Single View Geometry

Coplanar points: The orthographic case with the origin of the camera coordinate frame in the image plane:

$$
\left(\begin{array}{c}
w u \\
w v \\
w
\end{array}\right)=\left(\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
& & & \\
& R & & T \\
& & & \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

With an infinite focal length and assuming the observed to be in the plane $\mathrm{z}=0$ in the world coordinate frame:

$$
\left(\begin{array}{c}
w u \\
w v \\
w
\end{array}\right)=\left(\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
R_{11} & R_{12} & T_{x} \\
R_{21} & R_{22} & T_{y} \\
R_{31} & R_{32} & T_{z} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
1
\end{array}\right)
$$

Thus:

$$
\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right) \sim\left(\begin{array}{ccc}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
0 & 0 & m_{33}
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
1
\end{array}\right)
$$

The projection in this case is therefore a 2D affine transformation of the plane.

