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Projective Geometry

Perspective deformation can be modelled with 2D projective transformation

Projective geometry provides a mathematical formalism to describe the geometry of
cameras and the associated transformations -> help designing computational approaches
in visual computing.
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Projective Geometry

\ / Infinity Projective Geometry

Affine Geometry

Euclidean Geometry

non-parallel lines parallel lines

Projective geometry generalizes definitions and properties, e.g. two lines always interesect, and
encompasses affine and Euclidean geometries as subgroups of transformations.

Key Aspect -> Infinity is modeled in the projective geometry.
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Projective Geometry - Definitions

R, Ra

Projective Space: A point of a real projective space P" is represented by a . j

vector of real coordinates X = [xy, ..., z,]" , at least one of which is non-zero. C
The {z;}s are called the projective or homogeneous coordinates and two vectors
X and Y represent the same point when there exists a scalar k € R* such that:

Li= kyz VZ)

which we will denote by:
X~Y.

The projective space P? associated to R>
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Projective Geometry - Definitions

A projective basis is a set of (n + 2) points of P™, no (n + 1) of which are
linearly dependent. For example:

1] [ 0] 0] [ 1]
0 1 0 1
0| |0 1| |1 ]
Ag Aq A, A*

is the canonical basis where the {A;}s are called the basis points and A* the
unit point.
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Projective Geometry - Definitions

Projective Transformations: A matrix M of dimensions (n+1) X (n+1)

such that det(M) # 0, or equivalently non-singular, defines a linear transforma-

tion from P" to itself that is called a homography, a collineation or a projective
transformation.

Projective transformations are the most general transformations that preserve
incidence relationships, i.e. collinearity and concurrence.
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Projective Geometry - Properties

Change of basis: Let {Xp,..., Xy41} and {¥p, .., Y41} be 2 basis of P", ) B[ .
then there exists a non-singular matrix M of dimension (n + 1) X (n + 1) such
that:

M X~ Y, i

where M is determined up to a scale factor.

Changes of basis are projective transformations.

Change of basis in P? or projective transformation
between A, B,C and A’ B',C". 8
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Projective Geometry - Properties

Hyperplanes: Consider m points of P" that are linearly independent with
m < n. The set of points in P" that are linearly dependent on these m points
form a projective space of dimension m — 1. When this dimension is equal to 1,
2 and n - 1, this space is called line, plane and hyperplane respectively.

Duality: The set of hyperplanes of P" is a projective space of dimension n.
Any definition, property or theorem that applies to the points of a projective
space is also valid for its hyperplanes.

2 lines define a point

2 points define a line
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Projective Geometry - Properties

Hyperplane at infinity: In P? any line L is the hyperplane at infinity for the affine space A% = P?\ L.
In this affine space A2, all lines that share the same direction are concurrent on the line at infinity.
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Projective Geometry - Properties

Ellipse Parabola Hyperbola

Conics: The affine classification of conics with respect to their incidences with the line at infinity. In
the projective plane conics are all projective transformations of the circle

11
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Points and lines: points A = [z 4,ya,wal", B = [zB,yB,wps]"

and C = [z¢,yc,wc|t are collinear if:

rA Ip IO
ya yB Yo |=0.
wa wWp WC

Lo

S laproctmapyctnapwe = [lap,map,napl- | yo
We

L aop is the line going through A and B and any point C
that belongs to Lap statisfy LYz -C =0

Projective Geometry — Plane P?

000090

Duality L! - C can describe all lines L
going through C' or all points C' along
line L.

12
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Projective Geometry — Plane P?

Exercises
1. What is the point X intersection of the lines L, and Lg 7
2. What is the line L going through the points X; and X5 7

3. Consider two lines L1 = [ll, ma, nl]t and L2 = [ll, ma, ng]t, what is
the point intersection of these two lines 7 what does it represent ?
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Projective Geometry — Plane P?

Transf. group | Dof Matrix Deformation | Invariants
cos) —sinf Ty — <>
Euclidean 3 sinff  cost T length, area
0 0 1
ecosf)  —sinf T, :
) 0 - <> length ratio, angle,
[sometry 4 esinfl  cos T
absolut
0 0 1
parallelism,  area
ay as as — O ratio, length ratio
Affine 6 ay a5 g on a line, linear
0O 0 1 vector combina-
tions
hi hy hj — O incidence, collinear-
Projective 8 hys hs hg ity, concurrence,
h7 hg ho cross-ratio

Transformation hierarchy
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Projective Geometry — Plane P?

Exercises

1.
2.

How can we determine a homography H given 4 point correspondences 7

Show that if H is a homography that transforms points then the associated
transformation for lines is: H ~?.

. Show that affine transformations preserve parallelism but not projective

transformations.

. Show that collinearity and concurrence are preserved by projective trans-

formations.
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3D Geometry

y
3D elementary transformations !
1 0 0 0
[ 1 1, _ 0 costy —siny 0
O ? 8 Tl 1{: () sin (1) Ccos () ‘V/
Translations: T — y 0 0 0 1
0 01 T,
0 0 0 1

cos¢ 0 sing 0
0 I 0 0

; . — . . : —sing 0 cos¢p 0
Rotations: R=R, R, R,, S e

o det R =1,
-1 t cost) —sinf 0 0
L R - R . R sinf/  cosfl 0 0 5
e 0 0 1 0 \
0 0 0 1 o .
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Projections

Parallel projections

3D Geometry

/b

Perspective projections

17
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Parallel projections: Orthographic projections

X Or y axis

A

Image point (X,Y,0)

/

3D Geometry

World point (X,Y,Z)

O is the origin, the projection is perpendicular to the image plane

X

Y
0
1

L L
X >
O
Image plane

1.0 0 0
0100
0000
000 0 1]

Orthographic projection matrix

X

Y
A
1

» Optical (z) axis
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3D Geometry

Perspective projections

X Or y axis
4 World point (X,Y,Z)

Image point (x,y,z)

s

» Optical (z) axis

< »

Image plane

O is the projection centre, the optical axis the ray going through O and perpendicular to the
image plane, f the focal length.
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Perspective projections

3D Geometry

X Or y axis
World point (X,Y,Z)

Image point (x,y,z)

XorY

v

» Optical (z) axis

20
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3D Geometry

Perspective projections

X Or y axis

World point (X,Y,Z)
Image point (x,y,z)

XorY

Using thales: X/x =Z/f and Y/y=2/f
Thus: x=f X/Z, y=fY/Z, z=f.

» Optical (z) axis

21
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3D Geometry

Perspective projections

X Or y axis
World point (X,Y,Z)

Image point (x,y,z)

XorY
0= - » Optical (z) axis
< Z >
Using thales: X/x =Z/f and Y/y=2/f
Thus: x=f X/Z, y=f Y/C, z=f.
[z ] 1.0 0 O0] [ X ] [ X ] _fX/Z_
y | |01 0O O Y | Y N fY/Z
z | [0 0 1 0 Z | A f
1] _OOl/f 0] [ 1 ] _Zf_ | I

Perspective projection matrix

22
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3D Geometry

Perspective projections

Exercises

1.

Show that when the origin O is in the image plane along the optical axis, the perspective projection
matrix becomes:

10 0 0
01 0 0
00 0 0
0 0 1/f 1]

. What is then the link between the orthographic and perspective projections 7

Circle projection: assume a circle of radius R located in plane parallel to the image plane, at a
distance Z, and such that its center is on the optical axis. Show that its projection is a circle of

radius fR/(Z+f).

. The circle is moved in a direction that belongs to the image plane, what becomes its projection ?

23
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3D Geometry

Perspective projections

Vanishing point /

~—

\

Parallel lines intersect at infinity at the same location which, once projected, defines a vanishing
point.

24
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Perspective projections

3D Geometry

La céne, Leonardo Da Vinci

Vanishing points in perspective paintings

- o N o >
- ——— FaSn jyacy S
gy e R I N s et A%?‘h:.ha.. R e S
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3D Geometry

Perspective projections

For lines in a plane, vanishing points define a line called horizon line.

26
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Single View Geometry

Camera Model: Projection parallel or perspective ?

27
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Single View Geometry

In practice the mostly used camera model is the pinhole model:

—

image
plane

- —
| .~
/ pinhole | -7 virtual

image
Forsyth & Ponce, computer vision book

And the full transformation from 3D to 2D is modeled as a projective transformation that
includes a perspective projection.

28
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Single View Geometry

R
The full transformation is composed of: Oit(ical axis
1. Arigid transformation between the world coordinate R; 4
frame and the camera coordinate frame: Rw -> Rc. R,
\'%
2. A perspective projection into the retinal plane: Rc -> Rr. I
f

3. A 2D transformation from retinal coordinates to image
pixel coordinates: Rr -> Ri R¢
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Single View Geometry

Retinal to image plane transformation:

Sensor pixel grid

Retinal plane

(0,0)——= 1
U k., 0 0 wug T
v _ 0 %k, 0 v i
f1=1 0 0 1 0 f v
1 0O 0 0 1 1
where:
1. k, et k, are the scale factors in pixels/mm.
I/ku mm - WON0)
kv optical axis
mm Pixel

2. (ug,v) are the coordinates, in pixels, of the optical
axis intersection with the retinal plane.

30
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The global transformation:

WU k.,
WU 0
w f 0

0

w

Single View Geometry

ocod o

O = O O

oS oo -

S O = O

~ = O O

o O OO

0 0 O

1

— N <
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The global transformation:

Single View Geometry

WU k., 0 0 wug 1 0 0 O

WU B 0 %k, 0 v . O 1 0 O R
ot —6—+—°6 ——+—9

w } \ 0O 0 0 1 } \ 0 0 1/f O 0O 0 O
WU k., 0 g 1 0 0 O R
WU = 0 v U0 O 1 0 0

w 0O 0 1 0 0 1/f O 0 0 0

1

1

— N <

— N
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Single View Geometry

The global transformation:

wu kuf 0 Uo
W = 0 kyf vy |- R T
W 0 0 1

When pixels on the sensor are not rectangular:

wu Tfﬁ =0 wug
wy | = 0 kof vo |- R T |-
w 0 0 1

— N <

— N
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Single View Geometry

The global transformation considered in practice (no distinction between scale factors and the focal length) :

o, C Ug
M ~ 0 o, v9 |- R T = K- R T |,
0O 0 1

M~ (K-R K-T).

Where:

1. Kisthe 3x3 intrinsic parameter matrix, i.e. the camera intrinsics.
2. [RT]is the 3x4 extrinsic parameter matrix, i.e. the camera location.

A camera is therefore described by 11 parameters which corresponds the degree of freedom of a 3x4
projective matrix. The calibration of camera consists in estimating the matrix M and the camera parameters.
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Single View Geometry

Exercises
1. M has 11 dof, how many 3D-2D correspondences are required to estimate M 7

2. Denoting M the 3x3 matrix and m the 3x1 vector such that M ~ (M m). Show that the location
C' of the camera projection centre in the world coordinate frame is

C = —M_l -m.

3. Given an estimation of M by, e.g. calibration, how can the camera parameters be computed ?

35
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Single View Geometry

V4

Application: Coplanar points

%

Assume, without loss of generality, that points belong to the plane z=0, then:

wU a, C U Ri1 Ry T, T
wuv = 0 Ay Vo . R21 R22 Ty . y
w O 0 1 R31 R32 Tz 1

36
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Single View Geometry

Thus:
Uu mip M1z Mi3 x
v ~ Ma21 Ma22 M23 ' Y
1 ms1 M3z M33 1

The projection in this case is therefore a 2D projective transformation of the plane.

What can be deduced for the transformation between two perspectives projections of coplanar points ?
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Single View Geometry

Coplanar points: The orthographic case with the origin of the camera coordinate frame in the image plane:

X
wu k. 0 wup 1 0 0 O
WU = 0 k, v -1 01 0 O R I }Z/
w 0 0 1 00 1/f 1 00 0 1 |
With an infinite focal length and assuming the observed to be in the plane z=0 in the world coordinate frame:
wu k., 0 ug 1 0 0 O gll 212 ;ﬂc X
wv | = 0 ky wo 0100 R21 R22 7 Y
31 32 z
w 0O 0 1 0 0 0 1 0 0 1 1
Thus:
U mip  MMi2 Mi3 X
v | ~ | mar Mo mo3 || Y
1 0 0 RE] 1

The projection in this case is therefore a 2D affine transformation of the plane.



