

3D Vision – Geometry1

Edmond Boyer

Contents

- 1. Projective geometry (ref. document available online)
- 2. Camera model or single view geometry

Projective Geometry

Perspective deformation can be modelled with 2D projective transformation

Projective geometry provides a mathematical formalism to describe the geometry of cameras and the associated transformations -> help designing computational approaches in visual computing.

Projective Geometry

Projective geometry generalizes definitions and properties, e.g. two lines always interesect, and encompasses affine and Euclidean geometries as subgroups of transformations.

Key Aspect -> Infinity is modeled in the projective geometry.

Projective Geometry - Definitions

Projective Space: A point of a real projective space \mathcal{P}^n is represented by a vector of real coordinates $X = [x_0, ..., x_n]^t$, at least one of which is non-zero. The $\{x_i\}$ s are called the projective or homogeneous coordinates and two vectors X and Y represent the same point when there exists a scalar $k \in \mathbb{R}^*$ such that:

$$x_i = ky_i \quad \forall i,$$

which we will denote by:

 $X \sim Y$.

The projective space \mathcal{P}^2 associated to \mathbb{R}^3

Projective Geometry - Definitions

A projective basis is a set of (n+2) points of \mathcal{P}^n , no (n+1) of which are linearly dependent. For example:

is the canonical basis where the $\{A_i\}$ s are called the basis points and A^* the unit point.

Projective Geometry - Definitions

Projective Transformations: A matrix M of dimensions $(n+1) \times (n+1)$ such that $det(M) \neq 0$, or equivalently non-singular, defines a linear transformation from \mathcal{P}^n to itself that is called a homography, a collineation or a projective transformation.

Projective transformations are the most general transformations that preserve incidence relationships, i.e. collinearity and concurrence.

Change of basis: Let $\{X_0, ..., X_{n+1}\}$ and $\{Y_0, ..., Y_{n+1}\}$ be 2 basis of \mathcal{P}^n , then there exists a non-singular matrix M of dimension $(n+1) \times (n+1)$ such that:

$$M \cdot X_i \sim Y_i \quad \forall i,$$

where M is determined up to a scale factor.

Changes of basis are projective transformations.

Hyperplanes: Consider m points of \mathcal{P}^n that are linearly independent with m < n. The set of points in \mathcal{P}^n that are linearly dependent on these m points form a projective space of dimension m-1. When this dimension is equal to 1, 2 and n-1, this space is called line, plane and hyperplane respectively.

Duality: The set of hyperplanes of \mathcal{P}^n is a projective space of dimension n. Any definition, property or theorem that applies to the points of a projective space is also valid for its hyperplanes.

Hyperplane at infinity: In \mathcal{P}^2 any line *L* is the hyperplane at infinity for the affine space $\mathcal{A}^2 = \mathcal{P}^2 \setminus L$. In this affine space \mathcal{A}^2 , all lines that share the same direction are concurrent on the line at infinity.

Conics: The affine classification of conics with respect to their incidences with the line at infinity. In the projective plane conics are all projective transformations of the circle

Points and lines: points $A = [x_A, y_A, w_A]^t$, $B = [x_B, y_B, w_B]^t$ and $C = [x_C, y_C, w_C]^t$ are collinear if:

 $\begin{vmatrix} x_A & x_B & x_C \\ y_A & y_B & y_C \\ w_A & w_B & w_C \end{vmatrix} = 0.$

$$\Leftrightarrow l_{AB} \cdot x_C + m_{AB} \cdot y_C + n_{AB} \cdot w_C = [l_{AB}, m_{AB}, n_{AB}] \cdot \begin{bmatrix} x_C \\ y_C \\ w_C \end{bmatrix}$$

$$\Leftrightarrow L^t_{AB} \cdot C = 0$$

 L_{AB} is the line going through A and B and any point C that belongs to L_{AB} statisfy $L_{AB}^t \cdot C = 0$

Duality $L^t \cdot C$ can describe all lines L going through C or all points C along line L.

Exercises

- 1. What is the point X intersection of the lines L_1 and L_2 ?
- 2. What is the line L going through the points X_1 and X_2 ?
- 3. Consider two lines $L_1 = [l_1, m_1, n_1]^t$ and $L_2 = [l_1, m_1, n_2]^t$, what is the point intersection of these two lines ? what does it represent ?

Transf. group	Dof	Matrix	Deformation	Invariants	
Euclidean	3	$\begin{bmatrix} \cos\theta & -\sin\theta & T_0\\ \sin\theta & \cos\theta & T_1\\ 0 & 0 & 1 \end{bmatrix}$	$\Box \rightarrow \diamondsuit$	length, area	
Isometry	4	$\begin{bmatrix} \epsilon \cos \theta & -\sin \theta & T_0 \\ \epsilon \sin \theta & \cos \theta & T_1 \\ 0 & 0 & 1 \end{bmatrix}$	$\Box \rightarrow \diamondsuit$	length ratio, angle, absolut	
Affine	6	$\left[\begin{array}{rrrrr} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{array}\right]$		parallelism, area ratio, length ratio on a line, linear vector combina- tions	
Projective	8	$\begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$	$\Box \rightarrow \diamondsuit$	incidence, collinear- ity, concurrence, cross-ratio	

Transformation hierarchy

Exercises

- 1. How can we determine a homography H given 4 point correspondences ?
- 2. Show that if H is a homography that transforms points then the associated transformation for lines is: H^{-t} .
- 3. Show that affine transformations preserve parallelism but not projective transformations.
- 4. Show that collinearity and concurrence are preserved by projective transformations.

Projections

Parallel projections

Perspective projections

Parallel projections: Orthographic projections

O is the origin, the projection is perpendicular to the image plane

$$\begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
Orthographic projection matrix

or mographic projection matrix

Perspective projections

O is the projection centre, the optical axis the ray going through O and perpendicular to the image plane, f the focal length.

Perspective projections

Perspective projections

Using thales: X/x = Z/f and Y/y=Z/f Thus: x=f X/Z, y= f Y/Z, z=f.

Perspective projections

Using thales: X/x = Z/f and Y/y=Z/f
Thus: x=f X/Z, y= f Y/C, z=f.

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \\ Z/f \end{bmatrix} \sim \begin{bmatrix} fX/Z \\ fY/Z \\ f \\ 1 \end{bmatrix}$$
Perspective projection matrix

Perspective projections

Exercises

1. Show that when the origin O is in the image plane along the optical axis, the perspective projection matrix becomes:

1	0	0	0]
0	1	0	0
0	0	0	0
0	0	1/f	1

- 2. What is then the link between the orthographic and perspective projections ?
- 3. Circle projection: assume a circle of radius R located in plane parallel to the image plane, at a distance Z, and such that its center is on the optical axis. Show that its projection is a circle of radius fR/(Z+f).
- 4. The circle is moved in a direction that belongs to the image plane, what becomes its projection ?

Perspective projections

Parallel lines intersect at infinity at the same location which, once projected, defines a vanishing point.

Perspective projections

La cène, Leonardo Da Vinci

Vanishing points in perspective paintings

Perspective projections

For lines in a plane, vanishing points define a line called horizon line.

Camera Model: Projection parallel or perspective ?

In practice the mostly used camera model is the pinhole model:

And the full transformation from 3D to 2D is modeled as a projective transformation that includes a perspective projection.

The full transformation is composed of:

- 1. A rigid transformation between the world coordinate frame and the camera coordinate frame: Rw -> Rc.
- 2. A perspective projection into the retinal plane: Rc -> Rr.
- 3. A 2D transformation from retinal coordinates to image pixel coordinates: Rr -> Ri

(0.0)

Retinal to image plane transformation:

$$\begin{pmatrix} u \\ v \\ f \\ 1 \end{pmatrix} = \begin{pmatrix} k_u & 0 & 0 & u_0 \\ 0 & k_v & 0 & v_0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ f \\ 1 \end{pmatrix}$$

where:

1. k_u et k_v are the scale factors in pixels/mm.

(u0,v0) (u0,v0) (u0,v0) y (u0,v0) y

Sensor pixel grid

2. (u_0, v_0) are the coordinates, in pixels, of the optical axis intersection with the retinal plane.

The global transformation:

$$\begin{pmatrix} wu\\wv\\wf\\w \end{pmatrix} = \begin{pmatrix} k_u & 0 & 0 & u_0\\0 & k_v & 0 & v_0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 1/f & 0 \end{pmatrix} \cdot \begin{pmatrix} R & T\\ & & \\ & & \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X\\Y\\Z\\1 \end{pmatrix}$$

The global transformation:

$$\begin{pmatrix} wu\\wv\\wf\\w \end{pmatrix} = \begin{pmatrix} k_u & 0 & 0 & u_0\\0 & k_v & 0 & v_0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 1/f & 0 \end{pmatrix} \cdot \begin{pmatrix} R & T\\0 & 0 & 0 & 1\\0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X\\Y\\Z\\1 \end{pmatrix}$$
$$\begin{pmatrix} wu\\wv\\w \end{pmatrix} = \begin{pmatrix} k_u & 0 & u_0\\0 & k_v & v_0\\0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1/f & 0 \end{pmatrix} \cdot \begin{pmatrix} R & T\\0 & 0 & 0 & 1\\0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X\\Y\\Z\\1 \end{pmatrix}$$

The global transformation:

$$\begin{pmatrix} wu \\ wv \\ w \end{pmatrix} = \begin{pmatrix} k_u f & 0 & u_0 \\ 0 & k_v f & v_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} R & T \\ Z \\ 1 \end{pmatrix}$$

When pixels on the sensor are not rectangular:

$$\begin{pmatrix} wu \\ wv \\ w \end{pmatrix} = \begin{pmatrix} k_u f & c \neq 0 & u_0 \\ 0 & k_v f & v_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} R & T \\ - P & T \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

The global transformation considered in practice (no distinction between scale factors and the focal length) :

$$M \sim \begin{pmatrix} \alpha_u & c & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} R & T \\ \end{pmatrix} = K \cdot \begin{pmatrix} R & T \\ \end{pmatrix},$$
$$M \sim (K \cdot R \quad K \cdot T).$$

Where:

- 1. K is the 3x3 intrinsic parameter matrix, i.e. the camera intrinsics.
- 2. [R T] is the 3x4 extrinsic parameter matrix, i.e. the camera location.

A camera is therefore described by 11 parameters which corresponds the degree of freedom of a 3x4 projective matrix. The calibration of camera consists in estimating the matrix M and the camera parameters.

Exercises

- 1. M has 11 dof, how many 3D-2D correspondences are required to estimate M?
- 2. Denoting \overline{M} the 3x3 matrix and m the 3x1 vector such that $M \sim (\overline{M} m)$. Show that the location C of the camera projection centre in the world coordinate frame is

$$C = -\overline{M}^{-1} \cdot m.$$

3. Given an estimation of M by, e.g. calibration, how can the camera parameters be computed ?

Assume, without loss of generality, that points belong to the plane z=0, then:

$$\begin{pmatrix} wu\\wv\\w \end{pmatrix} = \begin{pmatrix} \alpha_u & c & u_0\\0 & \alpha_v & v_0\\0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} R_{11} & R_{12} & T_x\\R_{21} & R_{22} & T_y\\R_{31} & R_{32} & T_z \end{pmatrix} \cdot \begin{pmatrix} x\\y\\1 \end{pmatrix}$$

36

Thus:

$\left(\begin{array}{c} u \end{array} \right)$		(m_{11})	m_{12}	m_{13})		$\left(\begin{array}{c} x \end{array} \right)$
v	\sim	m_{21}	m_{22}	m_{23}	•	y
1/		$\begin{pmatrix} m_{31} \end{pmatrix}$	m_{32}	m_{33} /	1	1/

The projection in this case is therefore a 2D projective transformation of the plane.

What can be deduced for the transformation between two perspectives projections of coplanar points ?

Coplanar points: The orthographic case with the origin of the camera coordinate frame in the image plane:

$$\begin{pmatrix} wu \\ wv \\ w \end{pmatrix} = \begin{pmatrix} k_u & 0 & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 1 \end{pmatrix} \cdot \begin{pmatrix} R & T \\ R & T \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

With an infinite focal length and assuming the observed to be in the plane z=0 in the world coordinate frame:

$$\begin{pmatrix} wu\\wv\\w \end{pmatrix} = \begin{pmatrix} k_u & 0 & u_0\\0 & k_v & v_0\\0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} R_{11} & R_{12} & T_x\\R_{21} & R_{22} & T_y\\R_{31} & R_{32} & T_z\\0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X\\Y\\1 \end{pmatrix}$$

Thus:

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \sim \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & m_{33} \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$$

The projection in this case is therefore a 2D affine transformation of the plane.

×